Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Overview

Chord Recognition

Demo application

The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows 10 64 bits. Versions for Linux are expected to come as a console application.

Installing the application.

The demo app uses AutoML .NET as the default prediction engine and ONNX runtime as the legacy prediction engine to run the exported model created on python and keras and it needs Visual C++ to be installed on the machine that is going to run the app.

Steps.

  1. (Optional, only if you are interested on using ONNX runtime) Install Visual C++ from the Microsoft web site
  2. Download the application from our Releases
  3. Extract the folder and run ChordsDesktop.exe

title

Current Features

  • Load any .WAV or .MP3 file and it will split your file in different chords
  • Play, Pause and Stop audio controls
  • Seek to any chord in particular and resume the reproduction from there.
  • Ability to change the length of the window for analyzing the chords
  • Ability to correct the model prediction
  • Retrain the model based on your corrections

Training

NOTE this was tested using the following setup:

uname -mrs
Linux 5.4.72-microsoft-standard-WSL2 x86_64 # WSL2 Ubuntu 20.04

python --version
Python 3.8.5

This program is a university project on the introductory course to artificial intelligence.

You'll need python 3, pip, and virtualenv(optional but recommended) to run the program

  1. Clone the repository
  2. Go inside the project folder cd Chords.py/Chords.py
  3. Create a virtualenv virtualenv -p python3 my_env
  4. Activate your environment source my_env/bin/activate (linux) my_env/Scripts/activate.bat (windows)
  5. Install the dependencies pip install -r requirements.txt

At this point you have the environment ready to use several entry points.

  • python predict.py or python predict.py path/to/song.wav will give you a prediction of the chord present in that sound file, by default it goes to songs/d.wav which is the D chord. It will show a window similar to this one.

title

  • python split.py songs/guitar/about_a_girl.wav is an example of the split.py entry point that takes a longer song, splits it and runs the prediction for each song piece. The results are saved in a filed called spliter_result.txt

    • Example, if you ran python split.py songs/guitar/about_a_girl.wav, then spliter_result.txt would have the following content: em g em g em em em g em em g g em g g g em g g g em em g em em g g em em g g which are the chords that it was able to identify on the song.
  • In the file paper.pdf you'll find the final report of this university project with some references added. Currently it is only available in Spanish, you could go and try to use a translator, hope it helps

Comments
  • Bump tensorflow from 2.2.0rc4 to 2.4.0 in /final_project

    Bump tensorflow from 2.2.0rc4 to 2.4.0 in /final_project

    Bumps tensorflow from 2.2.0rc4 to 2.4.0.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.4.0

    Release 2.4.0

    Major Features and Improvements

    • tf.distribute introduces experimental support for asynchronous training of models via the tf.distribute.experimental.ParameterServerStrategy API. Please see the tutorial to learn more.

    • MultiWorkerMirroredStrategy is now a stable API and is no longer considered experimental. Some of the major improvements involve handling peer failure and many bug fixes. Please check out the detailed tutorial on Multi-worker training with Keras.

    • Introduces experimental support for a new module named tf.experimental.numpy which is a NumPy-compatible API for writing TF programs. See the detailed guide to learn more. Additional details below.

    • Adds Support for TensorFloat-32 on Ampere based GPUs. TensorFloat-32, or TF32 for short, is a math mode for NVIDIA Ampere based GPUs and is enabled by default.

    • A major refactoring of the internals of the Keras Functional API has been completed, that should improve the reliability, stability, and performance of constructing Functional models.

    • Keras mixed precision API tf.keras.mixed_precision is no longer experimental and allows the use of 16-bit floating point formats during training, improving performance by up to 3x on GPUs and 60% on TPUs. Please see below for additional details.

    • TensorFlow Profiler now supports profiling MultiWorkerMirroredStrategy and tracing multiple workers using the sampling mode API.

    • TFLite Profiler for Android is available. See the detailed guide to learn more.

    • TensorFlow pip packages are now built with CUDA11 and cuDNN 8.0.2.

    Breaking Changes

    • TF Core:

      • Certain float32 ops run in lower precsion on Ampere based GPUs, including matmuls and convolutions, due to the use of TensorFloat-32. Specifically, inputs to such ops are rounded from 23 bits of precision to 10 bits of precision. This is unlikely to cause issues in practice for deep learning models. In some cases, TensorFloat-32 is also used for complex64 ops. TensorFloat-32 can be disabled by running tf.config.experimental.enable_tensor_float_32_execution(False).
      • The byte layout for string tensors across the C-API has been updated to match TF Core/C++; i.e., a contiguous array of tensorflow::tstring/TF_TStrings.
      • C-API functions TF_StringDecode, TF_StringEncode, and TF_StringEncodedSize are no longer relevant and have been removed; see core/platform/ctstring.h for string access/modification in C.
      • tensorflow.python, tensorflow.core and tensorflow.compiler modules are now hidden. These modules are not part of TensorFlow public API.
      • tf.raw_ops.Max and tf.raw_ops.Min no longer accept inputs of type tf.complex64 or tf.complex128, because the behavior of these ops is not well defined for complex types.
      • XLA:CPU and XLA:GPU devices are no longer registered by default. Use TF_XLA_FLAGS=--tf_xla_enable_xla_devices if you really need them, but this flag will eventually be removed in subsequent releases.
    • tf.keras:

      • The steps_per_execution argument in model.compile() is no longer experimental; if you were passing experimental_steps_per_execution, rename it to steps_per_execution in your code. This argument controls the number of batches to run during each tf.function call when calling model.fit(). Running multiple batches inside a single tf.function call can greatly improve performance on TPUs or small models with a large Python overhead.
      • A major refactoring of the internals of the Keras Functional API may affect code that is relying on certain internal details:
        • Code that uses isinstance(x, tf.Tensor) instead of tf.is_tensor when checking Keras symbolic inputs/outputs should switch to using tf.is_tensor.
        • Code that is overly dependent on the exact names attached to symbolic tensors (e.g. assumes there will be ":0" at the end of the inputs, treats names as unique identifiers instead of using tensor.ref(), etc.) may break.
        • Code that uses full path for get_concrete_function to trace Keras symbolic inputs directly should switch to building matching tf.TensorSpecs directly and tracing the TensorSpec objects.
        • Code that relies on the exact number and names of the op layers that TensorFlow operations were converted into may have changed.
        • Code that uses tf.map_fn/tf.cond/tf.while_loop/control flow as op layers and happens to work before TF 2.4. These will explicitly be unsupported now. Converting these ops to Functional API op layers was unreliable before TF 2.4, and prone to erroring incomprehensibly or being silently buggy.
        • Code that directly asserts on a Keras symbolic value in cases where ops like tf.rank used to return a static or symbolic value depending on if the input had a fully static shape or not. Now these ops always return symbolic values.
        • Code already susceptible to leaking tensors outside of graphs becomes slightly more likely to do so now.
        • Code that tries directly getting gradients with respect to symbolic Keras inputs/outputs. Use GradientTape on the actual Tensors passed to the already-constructed model instead.
        • Code that requires very tricky shape manipulation via converted op layers in order to work, where the Keras symbolic shape inference proves insufficient.
        • Code that tries manually walking a tf.keras.Model layer by layer and assumes layers only ever have one positional argument. This assumption doesn't hold true before TF 2.4 either, but is more likely to cause issues now.

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.4.0

    Major Features and Improvements

    Breaking Changes

    • TF Core:
      • Certain float32 ops run in lower precision on Ampere based GPUs, including

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 2
  • Bump pyyaml from 5.3.1 to 5.4 in /final_project

    Bump pyyaml from 5.3.1 to 5.4 in /final_project

    Bumps pyyaml from 5.3.1 to 5.4.

    Changelog

    Sourced from pyyaml's changelog.

    5.4 (2021-01-19)

    Commits
    • 58d0cb7 5.4 release
    • a60f7a1 Fix compatibility with Jython
    • ee98abd Run CI on PR base branch changes
    • ddf2033 constructor.timezone: _copy & deepcopy
    • fc914d5 Avoid repeatedly appending to yaml_implicit_resolvers
    • a001f27 Fix for CVE-2020-14343
    • fe15062 Add 3.9 to appveyor file for completeness sake
    • 1e1c7fb Add a newline character to end of pyproject.toml
    • 0b6b7d6 Start sentences and phrases for capital letters
    • c976915 Shell code improvements
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 2
  • Bump rsa from 4.0 to 4.1 in /final_project

    Bump rsa from 4.0 to 4.1 in /final_project

    Bumps rsa from 4.0 to 4.1.

    Changelog

    Sourced from rsa's changelog.

    Version 4.1 - released 2020-06-10

    • Added support for Python 3.8.
    • Dropped support for Python 2 and 3.4.
    • Added type annotations to the source code. This will make Python-RSA easier to use in your IDE, and allows better type checking.
    • Added static type checking via MyPy.
    • Fix #129 Installing from source gives UnicodeDecodeError.
    • Switched to using Poetry for package management.
    • Added support for SHA3 hashing: SHA3-256, SHA3-384, SHA3-512. This is natively supported by Python 3.6+ and supported via a third-party library on Python 3.5.
    • Choose blinding factor relatively prime to N. Thanks Christian Heimes for pointing this out.
    • Reject cyphertexts (when decrypting) and signatures (when verifying) that have been modified by prepending zero bytes. This resolves CVE-2020-13757. Thanks Adelapie for pointing this out.
    Commits
    • c6731b1 Bumped version to 4.1
    • 80f0e9d Marked version 4.1 as released
    • 65ab5b5 Add support for Python 3.8
    • 9ecf340 Fixed credit for report
    • 93af6f2 Fix CVE-2020-13757: detect cyphertext modifications by prepending zero bytes
    • ae1a906 Add more type hints
    • 1473cb8 Drop character encoding markers for Python 2.x
    • 8ed5071 Choose blinding factor relatively prime to N
    • 1659432 Updated Code Climate badge in README.md
    • 96e13dd Configured CodeClimate
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 2
  • Bump tensorflow from 2.4.1 to 2.7.2 in /Chords.py

    Bump tensorflow from 2.4.1 to 2.7.2 in /Chords.py

    Bumps tensorflow from 2.4.1 to 2.7.2.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.7.2

    Release 2.7.2

    This releases introduces several vulnerability fixes:

    TensorFlow 2.7.1

    Release 2.7.1

    This releases introduces several vulnerability fixes:

    • Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725)
    • Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728)
    • Fixes a heap OOB access in Dequantize (CVE-2022-21726)
    • Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727)
    • Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730)
    • Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729)
    • Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731)
    • Fixes an OOM in ThreadPoolHandle (CVE-2022-21732)
    • Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733)
    • Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567)
    • Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568)

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.7.2

    This releases introduces several vulnerability fixes:

    Release 2.6.4

    This releases introduces several vulnerability fixes:

    • Fixes a code injection in saved_model_cli (CVE-2022-29216)
    • Fixes a missing validation which causes TensorSummaryV2 to crash (CVE-2022-29193)
    • Fixes a missing validation which crashes QuantizeAndDequantizeV4Grad (CVE-2022-29192)
    • Fixes a missing validation which causes denial of service via DeleteSessionTensor (CVE-2022-29194)
    • Fixes a missing validation which causes denial of service via GetSessionTensor (CVE-2022-29191)
    • Fixes a missing validation which causes denial of service via StagePeek (CVE-2022-29195)
    • Fixes a missing validation which causes denial of service via UnsortedSegmentJoin (CVE-2022-29197)
    • Fixes a missing validation which causes denial of service via LoadAndRemapMatrix (CVE-2022-29199)
    • Fixes a missing validation which causes denial of service via SparseTensorToCSRSparseMatrix (CVE-2022-29198)
    • Fixes a missing validation which causes denial of service via LSTMBlockCell (CVE-2022-29200)
    • Fixes a missing validation which causes denial of service via Conv3DBackpropFilterV2 (CVE-2022-29196)
    • Fixes a CHECK failure in depthwise ops via overflows (CVE-2021-41197)
    • Fixes issues arising from undefined behavior stemming from users supplying invalid resource handles (CVE-2022-29207)
    • Fixes a segfault due to missing support for quantized types (CVE-2022-29205)
    • Fixes a missing validation which results in undefined behavior in SparseTensorDenseAdd (CVE-2022-29206)

    ... (truncated)

    Commits
    • dd7b8a3 Merge pull request #56034 from tensorflow-jenkins/relnotes-2.7.2-15779
    • 1e7d6ea Update RELEASE.md
    • 5085135 Merge pull request #56069 from tensorflow/mm-cp-52488e5072f6fe44411d70c6af09e...
    • adafb45 Merge pull request #56060 from yongtang:curl-7.83.1
    • 01cb1b8 Merge pull request #56038 from tensorflow-jenkins/version-numbers-2.7.2-4733
    • 8c90c2f Update version numbers to 2.7.2
    • 43f3cdc Update RELEASE.md
    • 98b0a48 Insert release notes place-fill
    • dfa5cf3 Merge pull request #56028 from tensorflow/disable-tests-on-r2.7
    • 501a65c Disable timing out tests
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump tensorflow from 2.4.1 to 2.6.4 in /Chords.py

    Bump tensorflow from 2.4.1 to 2.6.4 in /Chords.py

    Bumps tensorflow from 2.4.1 to 2.6.4.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.6.4

    Release 2.6.4

    This releases introduces several vulnerability fixes:

    TensorFlow 2.6.3

    Release 2.6.3

    This releases introduces several vulnerability fixes:

    • Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725)
    • Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728)
    • Fixes a heap OOB access in Dequantize (CVE-2022-21726)
    • Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727)
    • Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730)
    • Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729)
    • Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731)
    • Fixes an OOM in ThreadPoolHandle (CVE-2022-21732)
    • Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733)
    • Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567)
    • Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568)
    • Fixes a number of CHECK-failures in MapStage (CVE-2022-21734)

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.6.4

    This releases introduces several vulnerability fixes:

    Release 2.8.0

    Major Features and Improvements

    • tf.lite:

      • Added TFLite builtin op support for the following TF ops:
        • tf.raw_ops.Bucketize op on CPU.
        • tf.where op for data types tf.int32/tf.uint32/tf.int8/tf.uint8/tf.int64.
        • tf.random.normal op for output data type tf.float32 on CPU.
        • tf.random.uniform op for output data type tf.float32 on CPU.
        • tf.random.categorical op for output data type tf.int64 on CPU.
    • tensorflow.experimental.tensorrt:

      • conversion_params is now deprecated inside TrtGraphConverterV2 in favor of direct arguments: max_workspace_size_bytes, precision_mode, minimum_segment_size, maximum_cached_engines, use_calibration and

    ... (truncated)

    Commits
    • 33ed2b1 Merge pull request #56102 from tensorflow/mihaimaruseac-patch-1
    • e1ec480 Fix build due to importlib-metadata/setuptools
    • 63f211c Merge pull request #56033 from tensorflow-jenkins/relnotes-2.6.4-6677
    • 22b8fe4 Update RELEASE.md
    • ec30684 Merge pull request #56070 from tensorflow/mm-cp-adafb45c781-on-r2.6
    • 38774ed Merge pull request #56060 from yongtang:curl-7.83.1
    • 9ef1604 Merge pull request #56036 from tensorflow-jenkins/version-numbers-2.6.4-9925
    • a6526a3 Update version numbers to 2.6.4
    • cb1a481 Update RELEASE.md
    • 4da550f Insert release notes place-fill
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump pillow from 8.2.0 to 9.0.1 in /Chords.py

    Bump pillow from 8.2.0 to 9.0.1 in /Chords.py

    Bumps pillow from 8.2.0 to 9.0.1.

    Release notes

    Sourced from pillow's releases.

    9.0.1

    https://pillow.readthedocs.io/en/stable/releasenotes/9.0.1.html

    Changes

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [@​radarhere, @​hugovk]
    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]

    9.0.0

    https://pillow.readthedocs.io/en/stable/releasenotes/9.0.0.html

    Changes

    ... (truncated)

    Changelog

    Sourced from pillow's changelog.

    9.0.1 (2022-02-03)

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [radarhere, hugovk]

    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]

    9.0.0 (2022-01-02)

    • Restrict builtins for ImageMath.eval(). CVE-2022-22817 #5923 [radarhere]

    • Ensure JpegImagePlugin stops at the end of a truncated file #5921 [radarhere]

    • Fixed ImagePath.Path array handling. CVE-2022-22815, CVE-2022-22816 #5920 [radarhere]

    • Remove consecutive duplicate tiles that only differ by their offset #5919 [radarhere]

    • Improved I;16 operations on big endian #5901 [radarhere]

    • Limit quantized palette to number of colors #5879 [radarhere]

    • Fixed palette index for zeroed color in FASTOCTREE quantize #5869 [radarhere]

    • When saving RGBA to GIF, make use of first transparent palette entry #5859 [radarhere]

    • Pass SAMPLEFORMAT to libtiff #5848 [radarhere]

    • Added rounding when converting P and PA #5824 [radarhere]

    • Improved putdata() documentation and data handling #5910 [radarhere]

    • Exclude carriage return in PDF regex to help prevent ReDoS #5912 [hugovk]

    • Fixed freeing pointer in ImageDraw.Outline.transform #5909 [radarhere]

    ... (truncated)

    Commits
    • 6deac9e 9.0.1 version bump
    • c04d812 Update CHANGES.rst [ci skip]
    • 4fabec3 Added release notes for 9.0.1
    • 02affaa Added delay after opening image with xdg-open
    • ca0b585 Updated formatting
    • 427221e In show_file, use os.remove to remove temporary images
    • c930be0 Restrict builtins within lambdas for ImageMath.eval
    • 75b69dd Dont need to pin for GHA
    • cd938a7 Autolink CWE numbers with sphinx-issues
    • 2e9c461 Add CVE IDs
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump tensorflow from 2.4.1 to 2.5.3 in /Chords.py

    Bump tensorflow from 2.4.1 to 2.5.3 in /Chords.py

    Bumps tensorflow from 2.4.1 to 2.5.3.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.5.3

    Release 2.5.3

    Note: This is the last release in the 2.5 series.

    This releases introduces several vulnerability fixes:

    • Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725)
    • Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728)
    • Fixes a heap OOB access in Dequantize (CVE-2022-21726)
    • Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727)
    • Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730)
    • Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729)
    • Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731)
    • Fixes an OOM in ThreadPoolHandle (CVE-2022-21732)
    • Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733)
    • Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567)
    • Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568)
    • Fixes a number of CHECK-failures in MapStage (CVE-2022-21734)
    • Fixes a division by zero in FractionalMaxPool (CVE-2022-21735)
    • Fixes a number of CHECK-fails when building invalid/overflowing tensor shapes (CVE-2022-23569)
    • Fixes an undefined behavior in SparseTensorSliceDataset (CVE-2022-21736)
    • Fixes an assertion failure based denial of service via faulty bin count operations (CVE-2022-21737)
    • Fixes a reference binding to null pointer in QuantizedMaxPool (CVE-2022-21739)
    • Fixes an integer overflow leading to crash in SparseCountSparseOutput (CVE-2022-21738)
    • Fixes a heap overflow in SparseCountSparseOutput (CVE-2022-21740)
    • Fixes an FPE in BiasAndClamp in TFLite (CVE-2022-23557)
    • Fixes an FPE in depthwise convolutions in TFLite (CVE-2022-21741)
    • Fixes an integer overflow in TFLite array creation (CVE-2022-23558)
    • Fixes an integer overflow in TFLite (CVE-2022-23559)
    • Fixes a dangerous OOB write in TFLite (CVE-2022-23561)
    • Fixes a vulnerability leading to read and write outside of bounds in TFLite (CVE-2022-23560)
    • Fixes a set of vulnerabilities caused by using insecure temporary files (CVE-2022-23563)
    • Fixes an integer overflow in Range resulting in undefined behavior and OOM (CVE-2022-23562)
    • Fixes a vulnerability where missing validation causes tf.sparse.split to crash when axis is a tuple (CVE-2021-41206)
    • Fixes a CHECK-fail when decoding resource handles from proto (CVE-2022-23564)
    • Fixes a CHECK-fail with repeated AttrDef (CVE-2022-23565)
    • Fixes a heap OOB write in Grappler (CVE-2022-23566)
    • Fixes a CHECK-fail when decoding invalid tensors from proto (CVE-2022-23571)
    • Fixes an unitialized variable access in AssignOp (CVE-2022-23573)
    • Fixes an integer overflow in OpLevelCostEstimator::CalculateTensorSize (CVE-2022-23575)
    • Fixes an integer overflow in OpLevelCostEstimator::CalculateOutputSize (CVE-2022-23576)
    • Fixes a null dereference in GetInitOp (CVE-2022-23577)
    • Fixes a memory leak when a graph node is invalid (CVE-2022-23578)
    • Fixes an abort caused by allocating a vector that is too large (CVE-2022-23580)
    • Fixes multiple CHECK-failures during Grappler's IsSimplifiableReshape (CVE-2022-23581)
    • Fixes multiple CHECK-failures during Grappler's SafeToRemoveIdentity (CVE-2022-23579)
    • Fixes multiple CHECK-failures in TensorByteSize (CVE-2022-23582)
    • Fixes multiple CHECK-failures in binary ops due to type confusion (CVE-2022-23583)

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.5.3

    This releases introduces several vulnerability fixes:

    • Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725)
    • Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728)
    • Fixes a heap OOB access in Dequantize (CVE-2022-21726)
    • Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727)
    • Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730)
    • Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729)
    • Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731)
    • Fixes an OOM in ThreadPoolHandle (CVE-2022-21732)
    • Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733)
    • Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567)
    • Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568)
    • Fixes a number of CHECK-failures in MapStage (CVE-2022-21734)
    • Fixes a division by zero in FractionalMaxPool (CVE-2022-21735)
    • Fixes a number of CHECK-fails when building invalid/overflowing tensor shapes (CVE-2022-23569)
    • Fixes an undefined behavior in SparseTensorSliceDataset (CVE-2022-21736)
    • Fixes an assertion failure based denial of service via faulty bin count operations (CVE-2022-21737)
    • Fixes a reference binding to null pointer in QuantizedMaxPool (CVE-2022-21739)
    • Fixes an integer overflow leading to crash in SparseCountSparseOutput (CVE-2022-21738)
    • Fixes a heap overflow in SparseCountSparseOutput (CVE-2022-21740)
    • Fixes an FPE in BiasAndClamp in TFLite (CVE-2022-23557)
    • Fixes an FPE in depthwise convolutions in TFLite (CVE-2022-21741)

    ... (truncated)

    Commits
    • 959e9b2 Merge pull request #54213 from tensorflow/fix-sanity-on-r2.5
    • d05fcbc Fix sanity build
    • f2526a0 Merge pull request #54205 from tensorflow/disable-flaky-tests-on-r2.5
    • a5f94df Disable flaky test
    • 7babe52 Merge pull request #54201 from tensorflow/cherrypick-510ae18200d0a4fad797c0bf...
    • 0e5d378 Set Env Variable to override Setuptools new behavior
    • fdd4195 Merge pull request #54176 from tensorflow-jenkins/relnotes-2.5.3-6805
    • 4083165 Update RELEASE.md
    • a2bb7f1 Merge pull request #54185 from tensorflow/cherrypick-d437dec4d549fc30f9b85c75...
    • 5777ea3 Update third_party/icu/workspace.bzl
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump pillow from 8.2.0 to 9.0.0 in /Chords.py

    Bump pillow from 8.2.0 to 9.0.0 in /Chords.py

    Bumps pillow from 8.2.0 to 9.0.0.

    Release notes

    Sourced from pillow's releases.

    9.0.0

    https://pillow.readthedocs.io/en/stable/releasenotes/9.0.0.html

    Changes

    ... (truncated)

    Changelog

    Sourced from pillow's changelog.

    9.0.0 (2022-01-02)

    • Restrict builtins for ImageMath.eval(). CVE-2022-22817 #5923 [radarhere]

    • Ensure JpegImagePlugin stops at the end of a truncated file #5921 [radarhere]

    • Fixed ImagePath.Path array handling. CVE-2022-22815, CVE-2022-22816 #5920 [radarhere]

    • Remove consecutive duplicate tiles that only differ by their offset #5919 [radarhere]

    • Improved I;16 operations on big endian #5901 [radarhere]

    • Limit quantized palette to number of colors #5879 [radarhere]

    • Fixed palette index for zeroed color in FASTOCTREE quantize #5869 [radarhere]

    • When saving RGBA to GIF, make use of first transparent palette entry #5859 [radarhere]

    • Pass SAMPLEFORMAT to libtiff #5848 [radarhere]

    • Added rounding when converting P and PA #5824 [radarhere]

    • Improved putdata() documentation and data handling #5910 [radarhere]

    • Exclude carriage return in PDF regex to help prevent ReDoS #5912 [hugovk]

    • Fixed freeing pointer in ImageDraw.Outline.transform #5909 [radarhere]

    • Added ImageShow support for xdg-open #5897 [m-shinder, radarhere]

    • Support 16-bit grayscale ImageQt conversion #5856 [cmbruns, radarhere]

    • Convert subsequent GIF frames to RGB or RGBA #5857 [radarhere]

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump tensorflow from 2.4.1 to 2.5.2 in /Chords.py

    Bump tensorflow from 2.4.1 to 2.5.2 in /Chords.py

    Bumps tensorflow from 2.4.1 to 2.5.2.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.5.2

    Release 2.5.2

    This release introduces several vulnerability fixes:

    • Fixes a code injection issue in saved_model_cli (CVE-2021-41228)
    • Fixes a vulnerability due to use of uninitialized value in Tensorflow (CVE-2021-41225)
    • Fixes a heap OOB in FusedBatchNorm kernels (CVE-2021-41223)
    • Fixes an arbitrary memory read in ImmutableConst (CVE-2021-41227)
    • Fixes a heap OOB in SparseBinCount (CVE-2021-41226)
    • Fixes a heap OOB in SparseFillEmptyRows (CVE-2021-41224)
    • Fixes a segfault due to negative splits in SplitV (CVE-2021-41222)
    • Fixes segfaults and vulnerabilities caused by accesses to invalid memory during shape inference in Cudnn* ops (CVE-2021-41221)
    • Fixes a null pointer exception when Exit node is not preceded by Enter op (CVE-2021-41217)
    • Fixes an integer division by 0 in tf.raw_ops.AllToAll (CVE-2021-41218)
    • Fixes an undefined behavior via nullptr reference binding in sparse matrix multiplication (CVE-2021-41219)
    • Fixes a heap buffer overflow in Transpose (CVE-2021-41216)
    • Prevents deadlocks arising from mutually recursive tf.function objects (CVE-2021-41213)
    • Fixes a null pointer exception in DeserializeSparse (CVE-2021-41215)
    • Fixes an undefined behavior arising from reference binding to nullptr in tf.ragged.cross (CVE-2021-41214)
    • Fixes a heap OOB read in tf.ragged.cross (CVE-2021-41212)
    • Fixes a heap OOB read in all tf.raw_ops.QuantizeAndDequantizeV* ops (CVE-2021-41205)
    • Fixes an FPE in ParallelConcat (CVE-2021-41207)
    • Fixes FPE issues in convolutions with zero size filters (CVE-2021-41209)
    • Fixes a heap OOB read in tf.raw_ops.SparseCountSparseOutput (CVE-2021-41210)
    • Fixes vulnerabilities caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes vulnerabilities caused by incomplete validation of shapes in multiple TF ops (CVE-2021-41206)
    • Fixes a segfault produced while copying constant resource tensor (CVE-2021-41204)
    • Fixes a vulnerability caused by unitialized access in EinsumHelper::ParseEquation (CVE-2021-41201)
    • Fixes several vulnerabilities and segfaults caused by missing validation during checkpoint loading (CVE-2021-41203)
    • Fixes an overflow producing a crash in tf.range (CVE-2021-41202)
    • Fixes an overflow producing a crash in tf.image.resize when size is large (CVE-2021-41199)
    • Fixes an overflow producing a crash in tf.tile when tiling tensor is large (CVE-2021-41198)
    • Fixes a vulnerability produced due to incomplete validation in tf.summary.create_file_writer (CVE-2021-41200)
    • Fixes multiple crashes due to overflow and CHECK-fail in ops with large tensor shapes (CVE-2021-41197)
    • Fixes a crash in max_pool3d when size argument is 0 or negative (CVE-2021-41196)
    • Fixes a crash in tf.math.segment_* operations (CVE-2021-41195)
    • Updates curl to 7.78.0 to handle CVE-2021-22922, CVE-2021-22923, CVE-2021-22924, CVE-2021-22925, and CVE-2021-22926.

    TensorFlow 2.5.1

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.5.2

    This release introduces several vulnerability fixes:

    ... (truncated)

    Commits
    • 957590e Merge pull request #52873 from tensorflow-jenkins/relnotes-2.5.2-20787
    • 2e1d16d Update RELEASE.md
    • 2fa6dd9 Merge pull request #52877 from tensorflow-jenkins/version-numbers-2.5.2-192
    • 4807489 Merge pull request #52881 from tensorflow/fix-build-1-on-r2.5
    • d398bdf Disable failing test
    • 857ad5e Merge pull request #52878 from tensorflow/fix-build-1-on-r2.5
    • 6c2a215 Disable failing test
    • f5c57d4 Update version numbers to 2.5.2
    • e51f949 Insert release notes place-fill
    • 2620d2c Merge pull request #52863 from tensorflow/fix-build-3-on-r2.5
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump pillow from 8.2.0 to 8.3.2 in /Chords.py

    Bump pillow from 8.2.0 to 8.3.2 in /Chords.py

    Bumps pillow from 8.2.0 to 8.3.2.

    Release notes

    Sourced from pillow's releases.

    8.3.2

    https://pillow.readthedocs.io/en/stable/releasenotes/8.3.2.html

    Security

    • CVE-2021-23437 Raise ValueError if color specifier is too long [hugovk, radarhere]

    • Fix 6-byte OOB read in FliDecode [wiredfool]

    Python 3.10 wheels

    • Add support for Python 3.10 #5569, #5570 [hugovk, radarhere]

    Fixed regressions

    • Ensure TIFF RowsPerStrip is multiple of 8 for JPEG compression #5588 [kmilos, radarhere]

    • Updates for ImagePalette channel order #5599 [radarhere]

    • Hide FriBiDi shim symbols to avoid conflict with real FriBiDi library #5651 [nulano]

    8.3.1

    https://pillow.readthedocs.io/en/stable/releasenotes/8.3.1.html

    Changes

    8.3.0

    https://pillow.readthedocs.io/en/stable/releasenotes/8.3.0.html

    Changes

    ... (truncated)

    Changelog

    Sourced from pillow's changelog.

    8.3.2 (2021-09-02)

    • CVE-2021-23437 Raise ValueError if color specifier is too long [hugovk, radarhere]

    • Fix 6-byte OOB read in FliDecode [wiredfool]

    • Add support for Python 3.10 #5569, #5570 [hugovk, radarhere]

    • Ensure TIFF RowsPerStrip is multiple of 8 for JPEG compression #5588 [kmilos, radarhere]

    • Updates for ImagePalette channel order #5599 [radarhere]

    • Hide FriBiDi shim symbols to avoid conflict with real FriBiDi library #5651 [nulano]

    8.3.1 (2021-07-06)

    • Catch OSError when checking if fp is sys.stdout #5585 [radarhere]

    • Handle removing orientation from alternate types of EXIF data #5584 [radarhere]

    • Make Image.array take optional dtype argument #5572 [t-vi, radarhere]

    8.3.0 (2021-07-01)

    • Use snprintf instead of sprintf. CVE-2021-34552 #5567 [radarhere]

    • Limit TIFF strip size when saving with LibTIFF #5514 [kmilos]

    • Allow ICNS save on all operating systems #4526 [baletu, radarhere, newpanjing, hugovk]

    • De-zigzag JPEG's DQT when loading; deprecate convert_dict_qtables #4989 [gofr, radarhere]

    • Replaced xml.etree.ElementTree #5565 [radarhere]

    ... (truncated)

    Commits
    • 8013f13 8.3.2 version bump
    • 23c7ca8 Update CHANGES.rst
    • 8450366 Update release notes
    • a0afe89 Update test case
    • 9e08eb8 Raise ValueError if color specifier is too long
    • bd5cf7d FLI tests for Oss-fuzz crash.
    • 94a0cf1 Fix 6-byte OOB read in FliDecode
    • cece64f Add 8.3.2 (2021-09-02) [CI skip]
    • e422386 Add release notes for Pillow 8.3.2
    • 08dcbb8 Pillow 8.3.2 supports Python 3.10 [ci skip]
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump tensorflow from 2.4.1 to 2.5.1 in /Chords.py

    Bump tensorflow from 2.4.1 to 2.5.1 in /Chords.py

    Bumps tensorflow from 2.4.1 to 2.5.1.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.5.1

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)
    • Fixes a division by 0 in ResourceScatterDiv (CVE-2021-37642)
    • Fixes a heap OOB in RaggedGather (CVE-2021-37641)
    • Fixes a std::abort raised from TensorListReserve (CVE-2021-37644)
    • Fixes a null pointer dereference in MatrixDiagPartOp (CVE-2021-37643)
    • Fixes an integer overflow due to conversion to unsigned (CVE-2021-37645)
    • Fixes a bad allocation error in StringNGrams caused by integer conversion (CVE-2021-37646)
    • Fixes a null pointer dereference in SparseTensorSliceDataset (CVE-2021-37647)
    • Fixes an incorrect validation of SaveV2 inputs (CVE-2021-37648)
    • Fixes a null pointer dereference in UncompressElement (CVE-2021-37649)
    • Fixes a segfault and a heap buffer overflow in {Experimental,}DatasetToTFRecord (CVE-2021-37650)
    • Fixes a heap buffer overflow in FractionalAvgPoolGrad (CVE-2021-37651)
    • Fixes a use after free in boosted trees creation (CVE-2021-37652)
    • Fixes a division by 0 in ResourceGather (CVE-2021-37653)
    • Fixes a heap OOB and a CHECK fail in ResourceGather (CVE-2021-37654)
    • Fixes a heap OOB in ResourceScatterUpdate (CVE-2021-37655)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToSparse (CVE-2021-37656)
    • Fixes an undefined behavior arising from reference binding to nullptr in MatrixDiagV* ops (CVE-2021-37657)
    • Fixes an undefined behavior arising from reference binding to nullptr in MatrixSetDiagV* ops (CVE-2021-37658)
    • Fixes an undefined behavior arising from reference binding to nullptr and heap OOB in binary cwise ops (CVE-2021-37659)
    • Fixes a division by 0 in inplace operations (CVE-2021-37660)
    • Fixes a crash caused by integer conversion to unsigned (CVE-2021-37661)
    • Fixes an undefined behavior arising from reference binding to nullptr in boosted trees (CVE-2021-37662)
    • Fixes a heap OOB in boosted trees (CVE-2021-37664)
    • Fixes vulnerabilities arising from incomplete validation in QuantizeV2 (CVE-2021-37663)
    • Fixes vulnerabilities arising from incomplete validation in MKL requantization (CVE-2021-37665)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToVariant (CVE-2021-37666)
    • Fixes an undefined behavior arising from reference binding to nullptr in unicode encoding (CVE-2021-37667)
    • Fixes an FPE in tf.raw_ops.UnravelIndex (CVE-2021-37668)
    • Fixes a crash in NMS ops caused by integer conversion to unsigned (CVE-2021-37669)
    • Fixes a heap OOB in UpperBound and LowerBound (CVE-2021-37670)
    • Fixes an undefined behavior arising from reference binding to nullptr in map operations (CVE-2021-37671)
    • Fixes a heap OOB in SdcaOptimizerV2 (CVE-2021-37672)
    • Fixes a CHECK-fail in MapStage (CVE-2021-37673)
    • Fixes a vulnerability arising from incomplete validation in MaxPoolGrad (CVE-2021-37674)
    • Fixes an undefined behavior arising from reference binding to nullptr in shape inference (CVE-2021-37676)
    • Fixes a division by 0 in most convolution operators (CVE-2021-37675)
    • Fixes vulnerabilities arising from missing validation in shape inference for Dequantize (CVE-2021-37677)
    • Fixes an arbitrary code execution due to YAML deserialization (CVE-2021-37678)
    • Fixes a heap OOB in nested tf.map_fn with RaggedTensors (CVE-2021-37679)

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)
    • Fixes a division by 0 in ResourceScatterDiv (CVE-2021-37642)
    • Fixes a heap OOB in RaggedGather (CVE-2021-37641)
    • Fixes a std::abort raised from TensorListReserve (CVE-2021-37644)
    • Fixes a null pointer dereference in MatrixDiagPartOp (CVE-2021-37643)
    • Fixes an integer overflow due to conversion to unsigned (CVE-2021-37645)
    • Fixes a bad allocation error in StringNGrams caused by integer conversion (CVE-2021-37646)
    • Fixes a null pointer dereference in SparseTensorSliceDataset (CVE-2021-37647)
    • Fixes an incorrect validation of SaveV2 inputs (CVE-2021-37648)
    • Fixes a null pointer dereference in UncompressElement (CVE-2021-37649)
    • Fixes a segfault and a heap buffer overflow in {Experimental,}DatasetToTFRecord (CVE-2021-37650)
    • Fixes a heap buffer overflow in FractionalAvgPoolGrad (CVE-2021-37651)
    • Fixes a use after free in boosted trees creation (CVE-2021-37652)
    • Fixes a division by 0 in ResourceGather (CVE-2021-37653)
    • Fixes a heap OOB and a CHECK fail in ResourceGather (CVE-2021-37654)
    • Fixes a heap OOB in ResourceScatterUpdate (CVE-2021-37655)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToSparse

    ... (truncated)

    Commits
    • 8222c1c Merge pull request #51381 from tensorflow/mm-fix-r2.5-build
    • d584260 Disable broken/flaky test
    • f6c6ce3 Merge pull request #51367 from tensorflow-jenkins/version-numbers-2.5.1-17468
    • 3ca7812 Update version numbers to 2.5.1
    • 4fdf683 Merge pull request #51361 from tensorflow/mm-update-relnotes-on-r2.5
    • 05fc01a Put CVE numbers for fixes in parentheses
    • bee1dc4 Update release notes for the new patch release
    • 47beb4c Merge pull request #50597 from kruglov-dmitry/v2.5.0-sync-abseil-cmake-bazel
    • 6f39597 Merge pull request #49383 from ashahab/abin-load-segfault-r2.5
    • 0539b34 Merge pull request #48979 from liufengdb/r2.5-cherrypick
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump certifi from 2019.11.28 to 2022.12.7 in /Chords.py

    Bump certifi from 2019.11.28 to 2022.12.7 in /Chords.py

    Bumps certifi from 2019.11.28 to 2022.12.7.

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Bump pillow from 8.2.0 to 9.3.0 in /Chords.py

    Bump pillow from 8.2.0 to 9.3.0 in /Chords.py

    Bumps pillow from 8.2.0 to 9.3.0.

    Release notes

    Sourced from pillow's releases.

    9.3.0

    https://pillow.readthedocs.io/en/stable/releasenotes/9.3.0.html

    Changes

    ... (truncated)

    Changelog

    Sourced from pillow's changelog.

    9.3.0 (2022-10-29)

    • Limit SAMPLESPERPIXEL to avoid runtime DOS #6700 [wiredfool]

    • Initialize libtiff buffer when saving #6699 [radarhere]

    • Inline fname2char to fix memory leak #6329 [nulano]

    • Fix memory leaks related to text features #6330 [nulano]

    • Use double quotes for version check on old CPython on Windows #6695 [hugovk]

    • Remove backup implementation of Round for Windows platforms #6693 [cgohlke]

    • Fixed set_variation_by_name offset #6445 [radarhere]

    • Fix malloc in _imagingft.c:font_setvaraxes #6690 [cgohlke]

    • Release Python GIL when converting images using matrix operations #6418 [hmaarrfk]

    • Added ExifTags enums #6630 [radarhere]

    • Do not modify previous frame when calculating delta in PNG #6683 [radarhere]

    • Added support for reading BMP images with RLE4 compression #6674 [npjg, radarhere]

    • Decode JPEG compressed BLP1 data in original mode #6678 [radarhere]

    • Added GPS TIFF tag info #6661 [radarhere]

    • Added conversion between RGB/RGBA/RGBX and LAB #6647 [radarhere]

    • Do not attempt normalization if mode is already normal #6644 [radarhere]

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Bump tensorflow from 2.4.1 to 2.9.3 in /Chords.py

    Bump tensorflow from 2.4.1 to 2.9.3 in /Chords.py

    Bumps tensorflow from 2.4.1 to 2.9.3.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.9.3

    Release 2.9.3

    This release introduces several vulnerability fixes:

    TensorFlow 2.9.2

    Release 2.9.2

    This releases introduces several vulnerability fixes:

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.9.3

    This release introduces several vulnerability fixes:

    Release 2.8.4

    This release introduces several vulnerability fixes:

    ... (truncated)

    Commits
    • a5ed5f3 Merge pull request #58584 from tensorflow/vinila21-patch-2
    • 258f9a1 Update py_func.cc
    • cd27cfb Merge pull request #58580 from tensorflow-jenkins/version-numbers-2.9.3-24474
    • 3e75385 Update version numbers to 2.9.3
    • bc72c39 Merge pull request #58482 from tensorflow-jenkins/relnotes-2.9.3-25695
    • 3506c90 Update RELEASE.md
    • 8dcb48e Update RELEASE.md
    • 4f34ec8 Merge pull request #58576 from pak-laura/c2.99f03a9d3bafe902c1e6beb105b2f2417...
    • 6fc67e4 Replace CHECK with returning an InternalError on failing to create python tuple
    • 5dbe90a Merge pull request #58570 from tensorflow/r2.9-7b174a0f2e4
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Bump joblib from 1.0.1 to 1.2.0 in /Chords.py

    Bump joblib from 1.0.1 to 1.2.0 in /Chords.py

    Bumps joblib from 1.0.1 to 1.2.0.

    Changelog

    Sourced from joblib's changelog.

    Release 1.2.0

    • Fix a security issue where eval(pre_dispatch) could potentially run arbitrary code. Now only basic numerics are supported. joblib/joblib#1327

    • Make sure that joblib works even when multiprocessing is not available, for instance with Pyodide joblib/joblib#1256

    • Avoid unnecessary warnings when workers and main process delete the temporary memmap folder contents concurrently. joblib/joblib#1263

    • Fix memory alignment bug for pickles containing numpy arrays. This is especially important when loading the pickle with mmap_mode != None as the resulting numpy.memmap object would not be able to correct the misalignment without performing a memory copy. This bug would cause invalid computation and segmentation faults with native code that would directly access the underlying data buffer of a numpy array, for instance C/C++/Cython code compiled with older GCC versions or some old OpenBLAS written in platform specific assembly. joblib/joblib#1254

    • Vendor cloudpickle 2.2.0 which adds support for PyPy 3.8+.

    • Vendor loky 3.3.0 which fixes several bugs including:

      • robustly forcibly terminating worker processes in case of a crash (joblib/joblib#1269);

      • avoiding leaking worker processes in case of nested loky parallel calls;

      • reliability spawn the correct number of reusable workers.

    Release 1.1.0

    • Fix byte order inconsistency issue during deserialization using joblib.load in cross-endian environment: the numpy arrays are now always loaded to use the system byte order, independently of the byte order of the system that serialized the pickle. joblib/joblib#1181

    • Fix joblib.Memory bug with the ignore parameter when the cached function is a decorated function.

    ... (truncated)

    Commits
    • 5991350 Release 1.2.0
    • 3fa2188 MAINT cleanup numpy warnings related to np.matrix in tests (#1340)
    • cea26ff CI test the future loky-3.3.0 branch (#1338)
    • 8aca6f4 MAINT: remove pytest.warns(None) warnings in pytest 7 (#1264)
    • 067ed4f XFAIL test_child_raises_parent_exits_cleanly with multiprocessing (#1339)
    • ac4ebd5 MAINT add back pytest warnings plugin (#1337)
    • a23427d Test child raises parent exits cleanly more reliable on macos (#1335)
    • ac09691 [MAINT] various test updates (#1334)
    • 4a314b1 Vendor loky 3.2.0 (#1333)
    • bdf47e9 Make test_parallel_with_interactively_defined_functions_default_backend timeo...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Bump protobuf from 3.15.8 to 3.18.3 in /Chords.py

    Bump protobuf from 3.15.8 to 3.18.3 in /Chords.py

    Bumps protobuf from 3.15.8 to 3.18.3.

    Release notes

    Sourced from protobuf's releases.

    Protocol Buffers v3.18.3

    C++

    Protocol Buffers v3.16.1

    Java

    • Improve performance characteristics of UnknownFieldSet parsing (#9371)

    Protocol Buffers v3.18.2

    Java

    • Improve performance characteristics of UnknownFieldSet parsing (#9371)

    Protocol Buffers v3.18.1

    Python

    • Update setup.py to reflect that we now require at least Python 3.5 (#8989)
    • Performance fix for DynamicMessage: force GetRaw() to be inlined (#9023)

    Ruby

    • Update ruby_generator.cc to allow proto2 imports in proto3 (#9003)

    Protocol Buffers v3.18.0

    C++

    • Fix warnings raised by clang 11 (#8664)
    • Make StringPiece constructible from std::string_view (#8707)
    • Add missing capability attributes for LLVM 12 (#8714)
    • Stop using std::iterator (deprecated in C++17). (#8741)
    • Move field_access_listener from libprotobuf-lite to libprotobuf (#8775)
    • Fix #7047 Safely handle setlocale (#8735)
    • Remove deprecated version of SetTotalBytesLimit() (#8794)
    • Support arena allocation of google::protobuf::AnyMetadata (#8758)
    • Fix undefined symbol error around SharedCtor() (#8827)
    • Fix default value of enum(int) in json_util with proto2 (#8835)
    • Better Smaller ByteSizeLong
    • Introduce event filters for inject_field_listener_events
    • Reduce memory usage of DescriptorPool
    • For lazy fields copy serialized form when allowed.
    • Re-introduce the InlinedStringField class
    • v2 access listener
    • Reduce padding in the proto's ExtensionRegistry map.
    • GetExtension performance optimizations
    • Make tracker a static variable rather than call static functions
    • Support extensions in field access listener
    • Annotate MergeFrom for field access listener
    • Fix incomplete types for field access listener
    • Add map_entry/new_map_entry to SpecificField in MessageDifferencer. They record the map items which are different in MessageDifferencer's reporter.
    • Reduce binary size due to fieldless proto messages
    • TextFormat: ParseInfoTree supports getting field end location in addition to start.

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Bump numpy from 1.19.5 to 1.22.0 in /Chords.py

    Bump numpy from 1.19.5 to 1.22.0 in /Chords.py

    Bumps numpy from 1.19.5 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v0.2-beta)
Owner
Andres Mauricio Rondon Patiño
Software Engineer @ Microsoft Programming is fun!
Andres Mauricio Rondon Patiño
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 8, 2023
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Intel Labs 210 Jan 4, 2023
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 2, 2023
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

Google 3.2k Dec 31, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 7, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 7, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

MIC-DKFZ 1.2k Jan 4, 2023
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 9, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 8, 2023
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022