Time Delayed NN implemented in pytorch

Overview

Pytorch Time Delayed NN

Time Delayed NN implemented in PyTorch. TDNN

Usage

kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)]

tdnn = TDNN(kernels, input_embedding_size)

# in is tensor with shape [batch_size, max_seq_len, max_word_len, input_embedding_size]
out = tdnn(in)
You might also like...
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

 Equivariant CNNs for the sphere and SO(3) implemented in PyTorch
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

This is a file about Unet implemented in Pytorch
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

 KinectFusion implemented in Python with PyTorch
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the output of YOLOv4 feed these object detections into Deep SORT (Simple Online and Realtime Tracking with a Deep Association Metric) in order to create a highly accurate object tracker.

YoloV5 implemented by TensorFlow2 , with support for training, evaluation and inference.
Comments
  • Question

    Question

    excuse me,I have a question. kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)]

    what are the(1,25),(2,50)....... mean? for example,I have a speech dateset which has 10000 frames * 2576 features. 2576 fratures per frame.Input is 1*2576. I want to implement speech separation by tdnn,batch_size is 200,target is IRM(1 * 161). what is "kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] "mean? And what can I get if I use it as my hidden layer? Thank you very much,I need help to complete my graduation project.And My english is poor, please forgive me.I appreciate your reply.Thanks a lot.

    opened by mozsen 0
Owner
Daniil Gavrilov
The Last AI Bender
Daniil Gavrilov
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 2, 2023
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It is easy to implement your own image or video deblurring or other restoration algorithms.

null 220 Jan 7, 2023
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

null 291 Jan 2, 2023
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 8, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 3, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 6, 2023
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 4, 2023