Baseline powergrid model for NY

Related tags

Deep Learning NYgrid
Overview

Baseline-powergrid-model-for-NY

Table of Contents
  1. About The Project
  2. Usage
  3. License
  4. Contact
  5. Acknowledgements

About The Project

As the urgency to address climate change intensifies, the integration of distributed and intermittent renewable resources in power grids will continue to accelerate. To ensure the reliability and efficacy of the transformed system, researchers and other stakeholders require a validated representation of the essential characteristics of the power grid that is accurate for a specific region under study. For example, the Climate Leadership and Community Protection Act (CLCPA) in New York sets ambitious targets for transformation of the energy system, opening many interesting research and analysis questions. To provide a platform for these analyses, this paper presents an overview of the current NYS power grid and develops an open-source1 baseline model using only publicly available data. The proposed model is validated with real data for power flow and Locational Marginal Prices (LMPs) to demonstrate the feasibility, functionality and consistency of the model with hourly data of 2019 as an example. The model is easily adjustable and customizable for various analyses of future configurations and scenarios that require spatial-temporal information of the NYS power grid with data access to all the available historical data, and serves as a practical system for general methods and algorithms testing.

Built With

The code is written with Matlab and depends on the installation of Matpower. Please go to the following websties and follow the instructions to install Matlab and Matpower.

Usage

  1. git clone https://github.com/AndersonEnergyLab-Cornell/NYgrid
  2. Add the full folder and the subfolders to your Matlab Path
  3. Modify the main.m file to run a specific case

Main.m

Specify a year, and download and format the data in that year. Downlaoded data are stored in the "Prep" directory. Formatted data are stored in the "Data" directory. For example, to run for Jan 1st 2019 1:00 am, modify the test year, month, day and hour.

  testyear = 2019;
  testmonth = 1;
  testday = 1;
  testhour = 1;

Data sources include:

  1. NYISO:
    • hourly fuel mix
    • hourly interface flow
    • hourly real time price
  2. RGGI:
    • hourly generation for thermal generators larger than 25 MW
  3. NRC:
    • Daily nuclear capacity factor
  4. EIA:
    • Monthly hydro generation data for Niagara and St. Lawrence

The main function first update the operation condition for load and generators from the historical data and store the modified mpc struct in mpcreduced Then it automatically calls the Optimal Power Flow and Power Flow test and store the result in resultOPF and resultPF, respectively.

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Vivienne Liu - [email protected]

Project Link: https://github.com/AndersonEnergyLab-Cornell/NYgrid

Acknowledgements

You might also like...
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

 DFM: A Performance Baseline for Deep Feature Matching
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

A tiny, friendly, strong baseline code for Person-reID (based on pytorch).
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

TensorFlow implementation of
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

Owner
Anderson Energy Lab at Cornell
Cornell Research lab on sustainable energy, led by Prof. Lindsay Anderson
Anderson Energy Lab at Cornell
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

null 23 Oct 17, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

null 82 Dec 15, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 11 Dec 1, 2021
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 3, 2023
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 8, 2023
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 4, 2023