Code to produce syntactic representations that can be used to study syntax processing in the human brain

Overview

Can fMRI reveal the representation of syntactic structure in the brain?

The code base for our paper on understanding syntactic representations in the human brain using naturalistic fMRI data. We explain how to reproduce our results in detail and also point to our preprocessed data. Please cite this work if you use our code:

@inproceedings{reddywehbe2021,
  title={Can fMRI reveal the representation of syntactic structure in the brain?},
  author={Reddy, Aniketh Janardhan and Wehbe, Leila},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Dependencies

This work used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC). All of the results were obtained using a machine with 14 CPU cores, 128 GB RAM and a CUDA-capable GPU. Our analyses were performed using iPython notebooks with Python3.6 kernels. We have tested this code on CentOS Linux 8. We recommend using a Linux-based environment to run our code. The analysis pipeline is fairly compute-intensive and it took us about 4 days to run it. Expect the runtime to be significantly longer if you are using a system with less than 8 cores. Our code does not make very heavy use of a GPU. Thus, an entry level graphics card such as an Nvidia RTX 2060 should be sufficient. It is possible to run the code even without a GPU but it might take longer to generate some features.

The Python packages needed to run our code can be installed by running the install_python_dependencies.sh script:

bash install_python_dependencies.sh

You will also have to install FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) which is needed to transform results to MNI space.

The graph embeddings-based features used in our paper are computed using sub2vec [1]. Please download the code written by the original authors for this algorithm from here http://people.cs.vt.edu/~bijaya/codes/sub2vec.zip and extract the code to a folder called sub2vec.

Clone the code for the incremental top-down parser [2, 3] from this repo - https://github.com/roarkbr/incremental-top-down-parser to the folder containing our code. This is needed to generate the syntactic surprisal and InConTreGE features. This code must be in a folder called incremental-top-down-parser.

Finally, download the ROIs created by Fedorenko et al. (2010) [4] from here - https://osf.io/2gaw3/ and extract the files to the folder containing our code. These are required to create the image of the ROIs.

Reproducing Our Results

The preprocessed fMRI data we use have been uploaded here - https://drive.google.com/file/d/1aYEZZSyrlo0UqswDBUiGzE3kGl3RcCn8/view?usp=sharing. Please download the file and extract it to the directory in which the code has been cloned. The data should be saved in a folder called sub_space_data.

Note that we cannot provide the anatomical data needed to visualize subject space results to protect the anonymity of the subjects. However, we provide the binary masks and transforms needed to transform subject space results to MNI space. These were obtained using pycortex.

Also, we provide all of the main files needed to generate our figures and tables since running our full pipeline can take a long time. These include the features we generate (in the features folder), the R^2 scores and the significance testing results (in the predictions and predictions_mni folders) among others.

Please follow these steps to reproduce our results using this codebase:

  1. Upon extracting the aforementioned file, the preprocessed fMRI data can be found in the folder called sub_space_data.

  2. The text which is presented to the subjects is in the chapter9.txt file. The string on each line of the file is sequentially presented (there are 5176 lines). The + symbol is a fixation cross that is periodically shown to the subjects. Since we use word-level features, all of the files which contain these features are numpy arrays of the form (5176, number of feature dimensions). The rows which correspond to the presentation of a + are filled with zeros.

  3. Generate the complexity metrics - Node Count (NC), Syntactic Surprisal (SS), Word Frequency (WF) and Word Length (WL), for every presented word by running the generate_node_count.ipynb, generate_syntactic_surprisal.ipynb, generate_word_frequencies_and_word_lengths.ipynb notebooks respectively. The outputs are stored in the features folder as node_count.npy, syntactic_surprisal.npy, word_frequency.npy and word_length.npy.

  4. Generate the POS tags of the presented words using the generate_pos_tags.ipynb notebook. The output is stored in the features folder as pos_tags.npy.

  5. Generate the DEP tags of the presented words using the generate_dep_tags.ipynb notebook. The output is stored in the features folder as dep_tags.npy.

  6. Generate the punctuation-based feature space by running the generate_punct.ipynb notebook. This feature space is extracted from POS and DEP tags since it is just a subset of these features. The output is stored in the features folder as punct_final.npy.

  7. In order to generate the ConTreGE Comp vectors, we first need to generate the subtrees to be encoded. This is done by running the generate_contrege_comp_subtrees.ipynb notebook. These subtrees are stored in the contrege_comp_subtrees folder. Then, we run the generate_contrege_comp_vectors_using_sub2vec.ipynb notebook to generate 5 sets of ConTreGE Comp vectors using sub2vec. These are stored in the features folder (called as contrege_comp_set_0.npy, contrege_comp_set_1.npy, contrege_comp_set_2.npy, contrege_comp_set_3.npy, contrege_comp_set_4.npy). We include all of the sets we generated and used in our analyses since these vectors are stochastic and can vary from run to run.

  8. We need to follow steps similar to those used to generate ConTreGE Comp so as to generate the ConTreGE Incomp vectors. We first need to generate the subtrees to be encoded by running the generate_contrege_incomp_subtrees.ipynb notebook. These subtrees are stored in the contrege_incomp_subtrees folder. Then, we run the generate_contrege_incomp_vectors_using_sub2vec.ipynb notebook to generate 5 sets of ConTreGE Incomp vectors using sub2vec. These are stored in the features folder (called as contrege_incomp_set_0.npy, contrege_incomp_set_1.npy, contrege_incomp_set_2.npy, contrege_incomp_set_3.npy, contrege_incomp_set_4.npy). Again, we include all of the sets we generated and used in our analyses since these vectors are also stochastic and can vary from run to run.

  9. The InConTreGE vectors are generated using the partial parses output by the aforementioned incremental top-down parser. To get the subtrees which are representative of these partial parses, run the generate_incontrege_subtrees.ipynb notebook. Then, run the generate_incontrege_vectors_using_sub2vec.ipynb notebook to generate 5 sets of InConTreGE vectors using sub2vec. These are stored in the features folder (called as incontrege_set_0.npy, incontrege_set_1.npy, incontrege_set_2.npy, incontrege_set_3.npy, incontrege_set_4.npy). We include all of the sets we generated and used in our analyses since these vectors are stochastic and can vary from run to run.

  10. To generate the BERT embeddings-based semantic features, run the generate_incremental_bert_embeddings.ipynb notebook. The output is stored in the features folder as incremental_bert_embeddings_layer12_PCA_dims_15.npy.

  11. Now that all of the individual features are ready, we can build the hierarchical feature groups used in the paper. Run the generate_hierarchical_feature_groups.ipynb notebook to build them. Note that the punctuation-based feature is not explicitly added to feature groups that contain POS and DEP tags. This is because POS and DEP tags already contain the punctuation feature in them. This step generates the following important files in the features folder:

    1. node_count_punct.npy = {NC, PU}
    2. syntactic_surprisal_punct.npy = {SS, PU}
    3. word_frequency_punct.npy = {WF, PU}
    4. word_length_punct.npy = {WL, PU}
    5. all_complexity_metrics_punct.npy = {CM, PU}
    6. pos_dep_tags_all_complexity_metrics.npy = {PD, CM, PU}
    7. contrege_comp_set_X_pos_dep_tags_all_complexity_metrics.npy = {CC, PD, CM, PU}
    8. contrege_incomp_set_X_pos_dep_tags_all_complexity_metrics.npy = {CI, PD, CM, PU}
    9. incontrege_set_X_pos_dep_tags_all_complexity_metrics.npy = {INC, PD, CM, PU}
    10. bert_PCA_dims_15_contrege_incomp_set_X_pos_dep_tags_node_count.npy = {BERT, CI, PD, CM, PU}
  12. We can then start training Ridge regression models and using these trained models to make predictions (training and prediction is done in a cross validated fashion as described in the paper). Run the predictions_master_script.ipynb notebook in order to generate all of the predictions. Predictions made using each feature group will be stored in separate subfolders in the predictions folder and will be in subject space (these subfolders will be named after the numpy files used to make the predictions). The R^2 scores for each subject and feature group are stored in the files of the form SubjectName_r2s.npy.

  13. The prediction results obtained using the ConTreGE Comp, ConTreGE Incomp and InConTreGE vectors need to be averaged across the 5 sets. Run the aggregate_contrege_results_across_sets.ipynb notebook to do this. The script outputs the averaged results to subfolders that start with the aggregated prefix in the predictions folder.

  14. After obtaining the predictions, we can start testing our results for significance. First, we test the significance of the R^2 scores obtained using punctuations only by performing a permutation test. This test is run by executing the significance_testing_permutation.ipynb notebook. Running this notebook will generate files of the form SubjectName_sig.npy in the punct_final subfolder of predictions. These subject space files indicate voxels for which the R^2 scores produced using punctuations are significant.

  15. Then, we test for the significance of the differences in R^2 scores between consecutive hierarchical feature groups by running the difference_significance_testing_bootstrap.ipynb notebook. This generates subfolders of the form {features in group 1}_diff_{features in group 2} that contain files of the form SubjectName_sig_boot.npy in the predictions folder. These subject space files indicate voxels for which the difference in R^2 scores between group 1 and group 2 (= R^2_group1 - R^2_group2) are significant. Note that:

    1. node_count_punct_diff_punct_final = {NC, PU} - {PU}
    2. syntactic_surprisal_punct_diff_punct_final = {SS, PU} - {PU}
    3. word_frequency_punct_diff_punct_final = {WF, PU} - {PU}
    4. word_length_punct_diff_punct_final = {WL, PU} - {PU}
    5. all_complexity_metrics_punct_diff_punct_final = {CM, PU} - {PU}
    6. pos_dep_tags_all_complexity_metrics_diff_all_complexity_metrics_punct = {PD, CM, PU} - {CM, PU}
    7. aggregated_contrege_comp_pos_dep_tags_all_complexity_metrics_diff_pos_dep_tags_all_complexity_metrics = {CC, PD, CM, PU} - {PD, CM, PU}
    8. aggregated_contrege_incomp_pos_dep_tags_all_complexity_metrics_diff_pos_dep_tags_all_complexity_metrics = {CI, PD, CM, PU} - {PD, CM, PU}
    9. aggregated_incontrege_pos_dep_tags_all_complexity_metrics_diff_pos_dep_tags_all_complexity_metrics = {INC, PD, CM, PU} - {PD, CM, PU}
    10. aggregated_bert_PCA_dims_15_contrege_incomp_pos_dep_tags_node_count_diff_aggregated_contrege_incomp_pos_dep_tags_node_count = {BERT, CI, PD, CM, PU} - {CI, PD, CM, PU}
  16. False Discovery Rate correction is then performed for all of the significance tests as described in the paper by running the perform_FDR_correction.ipynb notebook. For the punctuation feature, we obtain files of the form SubjectName_sig_group_corrected.npy and for all the other tests, files of the form SubjectName_sig_bootstrap_group_corrected.npy are obtained. These files are stored in the same subfolders of the predictions folder that contain the uncorrected p-val files.

  17. To generate the brain maps shown in the paper, we need to transform the significance testing results and R^2 scores that are in subject space to MNI space. Run the mni_transform.ipynb notebook to perform this transformation. The transformed files are saved in the predictions_mni folder. Note that running the aforementioned notebook requires FSL to be installed.

  18. Finally, running the create_figures.ipynb notebook generates the figures in our paper in a folder called figures. R^2+ figures are stored in r2plus_figures subfolder and the significance testing results are stored in the sig_figures subfolder. blank_plot_of_rois.png is a plot showing the ROIs and the ROI analysis figures are saved in the roi_figures subfolder.

The syntactic information analysis can be carried out by following these steps:

  1. Run the generate_ancestor_data_for_information_analysis.ipynb notebook to generate numpy files that encode the ancestor information. These files are stored in the ancestor_information_analysis folder.

  2. Then run the syntactic_information_analysis.ipynb notebook to perform the prediction analysis. The notebook generates a CSV file called final_syntactic_information_analysis_results.csv that contains the prediction accuracies and the associated p-vals. The last cell of the notebook shows the label distribution for each level.

To test that the BERT embeddings are better predictors of GloVe-based semantic vectors (extracted from spaCy) than the ConTreGE vectors, we first need to extract the GloVe-based semantic vectors by running the generate_spacy_embeddings.ipynb notebook. Then run the compare_glove_vectors_predictivity.ipynb notebook to train and test RidgeCV models that predict the GloVe-based semantic vectors. The outputs of the last two cells show that BERT embeddings are much predictors of these GloVe-based semantic vectors when compared to the ConTreGE vectors.

References

  1. Adhikari, Bijaya, et al. "Sub2vec: Feature learning for subgraphs." Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham, 2018.

  2. Roark, Brian. "Probabilistic top-down parsing and language modeling." Computational linguistics 27.2 (2001): 249-276.

  3. Roark, Brian, et al. "Deriving lexical and syntactic expectation-based measures for psycholinguistic modeling via incremental top-down parsing." Proceedings of the 2009 conference on empirical methods in natural language processing. 2009.

  4. Fedorenko, Evelina, et al. "New method for fMRI investigations of language: defining ROIs functionally in individual subjects." Journal of neurophysiology 104.2 (2010): 1177-1194.

You might also like...
Human Action Controller - A human action controller running on different platforms.
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

StyleGAN-Human: A Data-Centric Odyssey of Human Generation
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

This repo contains research materials released by members of the Google Brain team in Tokyo.
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

Owner
Aniketh Janardhan Reddy
Computer Science PhD Student, UC Berkeley
Aniketh Janardhan Reddy
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

null 4 Feb 13, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 9, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 8, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 4, 2023
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 3, 2023
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

null 129 Jan 4, 2023
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022