Masked Regression
MR - Python Implementation
This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize facial expressions. The demo video for MR can be found here.
Masked Linear Regression for Learning Local Receptive Fields for Facial Expression Synthesis
Nazar Khan1 · Arbish Akram1 · Arif Mahmood2 · Sania Ashraf1· Kashif Murtaza1
1 Punjab University College of Information Technology (PUCIT), Lahore, Pakistan
2 Department of Computer Science, Information Technology University (ITU), Lahore, Pakistan
International Journal of Computer Vision (IJCV), Nov 2019.
Usage
1. Download any Facial Expression Synthesis dataset
here.
2. Create a folder structure as described- Split images into training and test sets (e.g., 90%/10% for training and test, respectively).
- Crop all images to 128 x 128, where the faces are centered.
3. Training
To train MR:
$ python main.py --mode train --train_dataset_dir 'dataset/train/' --image_size 128 --total_images 200 --input_ch 1
--receptive_field 3 --lamda 0.4
4. Test
To test MR:
$ python main.py --mode test --test_dataset_dir 'dataset/test/' --image_size 128 --total_images 20 --input_ch 1
--receptive_field 3
5. Test in the wild
To test MR:
$ python main.py --mode test_inthewild --test_dataset_dir 'dataset/inthewild/' --image_size 128 --total_images 20 --input_ch 1
--receptive_field 3
Results
Facial expression synthesis on sketches and animals
Facial expression synthesis on in the wild images
Citation
If this work is useful for your research, please cite our Paper:
@article{khan_mr_ijcv_2019,
author="Khan, Nazar and Akram, Arbish and Mahmood, Arif and Ashraf, Sania and Murtaza, Kashif",
journal="International Journal of Computer Vision",
pages = "1433--1454",
title = "{Masked Linear Regression for Learning Local Receptive Fields for Facial Expression Synthesis}",
volume = "128",
year = "2020"
}