Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

Related tags

Deep Learning LADDER
Overview

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces accepted at NeurIPS-2021.

  • Running the code

    • Setting up conda environment from https://github.com/cambridge-mlg/weighted-retraining because we use their pre-existing VAE models. See 'Install dependencies' section.

    • Download datasets by following the 'Set up Data' section in the above repository.

    • Relative imports are setup as if LADDER directory's code is in weighted-retraining/weighted_retraining/opt-scripts/.

    • To run LADDER for chemical design task: python ladder_chemical_design.py

    • To run LADDER for arithmetic expression optimization, some things need to be set up in above weighted-retraining environment

      • Add a comma in line 34 of weighted-retraining/weighted_retraining/train_scripts/train_expr.py
      • unzip eq2_grammar_dataset.zip in weighted-retraining/assets/data/expr
      • run python ladder_expression.py

This code builds upon the existing code provided by authors of Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining. We thank the authors for their code.

Please consider citing both the papers if you use this work:

  • Austin Tripp, Erik Daxberger, and Jos{'e} Miguel Hern{'a}ndez-Lobato. Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining, NeurIPS 2020.
  • Aryan Deshwal and Janardhan Rao Doppa. Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces, NeurIPS 2021.
You might also like...
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations. Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

Navigating StyleGAN2 w latent space using CLIP
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Non-Official Pytorch implementation of
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

Owner
PhD student in Machine Learning
null
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 7, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 6, 2023
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

null 1 Feb 9, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 3, 2023
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022