Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Related tags

Deep Learning c2d
Overview

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Code & Data Appendix for Conjugated Discrete Distributions for Distributional Reinforcement Learning.

Björn Lindenberg, Jonas Nordqvist, Karl-Olof Lindahl

Citation

If you use C2D in your research we ask you to please cite the following:

@misc{lindenberg2021conjugated,
      title={Conjugated Discrete Distributions for Distributional Reinforcement Learning}, 
      author={Björn Lindenberg and Jonas Nordqvist and Karl-Olof Lindahl},
      year={2021},
      eprint={2112.07424},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Data

  • Agent scores are available in the data folder.
  • Raw experiment data for each seed is available in the folder data/supplementary.
  • Each seed was run on a VM Ubuntu 20.04 server with 64GB RAM, a single Nvidia Quadro P4000 GPU and TensorFlow 2.5.

Code

  • The C++20 source code that handles ALE and transition buffering resides in src.
  • The agent code, written in TensorFlow/Python (with algorithms), can be viewed in c2d.
  • Requires cuDNN, TensorFlow 2.X, python3, The Arcade Learning Environment, C++20 and LZ4. For a comprehensive view of dependencies, have a look at our VM setup files in install_scripts.

Atari Games

  • To avoid legal issues, our Atari 2600 rom file directory ale_roms is left empty. However the corresponding binaries are widely available for import from elsewhere, e.g., Breakout or breakout.bin can be extracted from the atari-py Python package.

Library

  • The directory ale_roms needs to be populated by the relevant binaries of different Atari games. ALE's checksum file md5.txt for checking binary compatibility is present in the root directory.

  • The initial library setup or any changes to settings.cmake will require compilation by

    bash build_lib.sh
    
  • One can train for one iteration (1M frames) in Breakout with:

    python3 run.py --game breakout --tag test --iterations 1
    

Figures

Performance Profile (Deep reinforcement learning at the edge of the statistical precipice, Agarwal et al. 2021)

Performance Profile Aggregate Metrics

Sampling Efficiency: Mean and Median

Mean Median

Training Graphs

All Games

Strong/Weak Examples

Support Evolution

Support

You might also like...
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Owner
null
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 1, 2023
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 7, 2023
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 7, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

null 1 Nov 24, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 3, 2021