Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift
This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).
Quickstart
- Install the requirements
pip install -r requirements.txt
- Run training. ex:
python run.py -t 000000000001 -d digits -i 1 -g 0 -s 10
- Results are logged in
./results/run_id
where run_id is the id of the run.
Options
python run.py [-t MODEL] [-d DATASET] [-i RUN_ITERATIONS] [-g GPUID] [-s SETTING]
- Choose the model (see Section 5 of the paper for more details):
-t 100000000000
:Source
-t 010000000000
:DANN
-t 001000000000
:WD_beta
for beta = 0-t 000111100000
:WD_beta
for beta in {1, 2, 3, 4}-t 000000011000
:MARSg
/MARSc
-t 000000000100
:IW-WD
-t 000000000010
:WD_gt
with true class-rations-t 000000000001
:OSTAR
- Choose the dataset:
-d digits
: Digits-d office
: Office31 and OfficeHome. Requires downloading pre-computed features at https://github.com/jindongwang/transferlearning/blob/master/data/dataset.md-d visda
: VisDA12. Requires downloading pre-computed features at http://csr.bu.edu/ftp/visda17/clf/ and preprocessing downloaded file withprepare_data_visda12.py
- Choose the number of runs (e.g. 1 for a single run)
- Choose the gpu id (e.g. 0)
- Choose the label shift setting defined in
compare_digits_setting.py
,compare_office_setting.py
,compare_visda_setting.py
Citation
@inproceedings{Kirchmeyer2022,
title={Mapping conditional distributions for domain adaptation under generalized target shift},
author={Matthieu Kirchmeyer and Alain Rakotomamonjy and Emmanuel de Bezenac and patrick gallinari},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=sPfB2PI87BZ}
}