VoCapXLM
Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training
Environment
DockerFile: dancingsoul/pytorch:VoCapXLM
Manully build the sentencepiece with following command:
cd sentencepiece
mkdir build
cd build
cmake ..
make -j $(nproc)
sudo make install
sudo ldconfig -v
Data Preparation
- Create a folder with
mkdir -p monolingual_text
in the root of this project. - Sample monolingual corpus for each language individually, move them to the monolingual_text directory, named after their language codes (e.g., en.txt).
- Sample the multilingual corpus from monolingual corpora with the following command:
python sample_multilingual_corpus.py \
--lang_prob_path ./lang_prob_wiki.json \
--input_dir ./monolingual_text/ \
--output_path ./multilingual_corpus.text \
--n_sample <n_sample> --beta <beta> --rescale
where the options are described as follows:
--lang_prob_path
: the probability of sampling training instances from each language during pre-training,lang_prob_wiki.json
is counted on Wikipedia corpus and the probabilities are rescaled with alpha=0.7 from Equation (3) in our paper.--n_sample
: number of sentences in the multilingual corpus where the final multilingual sentencepiece model is trained, the default value is 20000000.--rescale
: further rescale the probability with another value beta from Equation (2) in our paper.--beta
: the rescaling factor in Equation (2), the default value is 0.7.
Training Monolingual SentencePiece Models
Train monolingual sentencepiece models in different sizes to obtain vocabularies with different ALP, i.e., language-specific vocabulary capacity.
python train_mono_spm.py \
--input_dir ./monolingual_text/ \
--output_dir ~/monolingual_spm/ \
--languages <all_languages> \
--min_vocab_size <min_vocab_size> \
--max_vocab_size <max_vocab_size> \
--delta_vocab_size <delta_vocab_size> \
--n_sample <n_sample>
where the options are described as follows:
--languages
: all languages under the monolingual_text directory, separated with,
, e.g.en,fr,zh
.--min_vocab_size
: minimum vocabulary size allocated for each language, the default value is 1000.--max_vocab_size
: maximum vocabulary size allocated for each language, the default value is 50000.--delta_vocab_size
: the value of interval to learn vocabularies, the default value is 1000.--n_sample
: the number of sentences to calculate ALP for each language, the default value is 1000000.
or you can download our pre-trained monolingual sentencepiece models and vocabularies from [here][2].
Allocating Multilingual Vocabulary
Allocate the multilingual vocabulary from monolingual vocabularies:
python train_vocap.py \
--lang_prob_path ./lang_prob_wiki.json \
--input_dir ./monolingual_spm/ \
--output_path ./multilingual.vocab \
--beta <beta> --rescale --target_vocab_size <target_vocab_size>
where the options are described as follows:
--lang_prob_path
: same as the above.--rescale
: same as the above.--beta
: same as the above.--target_vocab_size
: the desired vocabulary size of the multilingual vocabulary, the default value is 500000.
Then Use sentencepiece to train the tokenizer given the multilingual vocabulary:
spm_train --input=./multilingual_corpus.text --model_prefix=<model_name> --vocab_size=<target_vocab_size> \
--character_coverage=0.9995 --model_type=unigram --shuffle_input_sentence=true \
--input_sentence_size=<input_sentence_size> --vocab_path=./multilingual.vocab
where the options are described as follows:
--model_prefix
: output model name prefix. <model_name>.model and <model_name>.vocab are generated.--character_coverage
: amount of characters covered by the model.--vocab_size
: same as--target_vocab_size
.--vocab_path
: the required subwords in the final learned tokenizer.
Paper
Please cite our paper \cite{bo2021vocapxlm}
if you found the resources in the repository useful.
@inproceedings{bo2021vocapxlm,
author = {Bo Zheng, Li Dong, Shaohan Huang, Saksham Singhal, Wanxiang Che, Ting Liu, Xia Song, Furu Wei},
booktitle = {Proceedings of EMNLP 2021},
title = {{Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training}},
year = {2021}
}