DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

Overview

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

This repository is related to the paper DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment, by Flávio Nakasato Cação1, Marcos Menon José1, André Seidel Oliveira1, Stefano Spindola1, Anna Helena Reali Costa1 and Fábio Gagliardi Cozman1. It was accepted at the Main Track of the 10th Brazilian Conference on Intelligent System (BRACIS'21).

Abstract: The challenge of climate change and biome conservation is one of the most pressing issues of our time - particularly in Brazil, where key environmental reserves are located. Given the availability of large textual databases on ecological themes, it is natural to resort to question answering (QA) systems to increase social awareness and understanding about these topics. In this work, we introduce multiple QA systems that combine in novel ways the BM25 algorithm, a sparse retrieval technique, with PTT5, a pre-trained state-of-the-art language model. Our QA systems focus on the Portuguese language, thus offering resources not found elsewhere in the literature. As training data, we collected questions from open-domain datasets, as well as content from the Portuguese Wikipedia and news from the press. We thus contribute with innovative architectures and novel applications, attaining an F1-score of 36.2 with our best model.

Acknowledgments

This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001) and by the Itaú Unibanco S.A., through the Programa de Bolsas Itaú (PBI) of the Centro de Ciência de Dados (C 2 D) of Escola Politécnica of Universidade de São Paulo (USP). We also gratefully acknowledge support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grants 312180/2018-7 and 310085/2020-9) and the Center for Artificial Intelligence (C4AI-USP), with support by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant 2019/ 07665-4) and by the IBM Corporation.



1 Polytechnic School, University of Sao Paulo, Sao Paulo, Brazil

You might also like...
 GrailQA: Strongly Generalizable Question Answering
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.

Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

This is the official implementation of
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Owner
null
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 8, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 50 Sep 24, 2021
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! ?? ?? To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 4, 2023
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022