Official implementation of YOGO for Point-Cloud Processing

Related tags

Deep Learning YOGO
Overview

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module

By Chenfeng Xu, Bohan Zhai, Bichen Wu, Tian Li, Wei Zhan, Peter Vajda, Kurt Keutzer, and Masayoshi Tomizuka.

This repository contains a Pytorch implementation of YOGO, a new, simple, and elegant model for point-cloud processing. The framework of our YOGO is shown below:

Selected quantitative results of different approaches on the ShapeNet and S3DIS dataset.

ShapeNet part segmentation:

Method mIoU Latency (ms) GPU Memory (GB)
PointNet 83.7 21.4 1.5
RSNet 84.9 73.8 0.8
PointNet++ 85.1 77.7 2.0
DGCNN 85.1 86.7 2.4
PointCNN 86.1 134.2 2.5
YOGO(KNN) 85.2 25.6 0.9
YOGO(Ball query) 85.1 21.3 1.0

S3DIS scene parsing:

Method mIoU Latency (ms) GPU Memory (GB)
PointNet 42.9 24.8 1.0
RSNet 51.9 111.5 1.1
PointNet++* 50.7 501.5 1.6
DGCNN 47.9 174.3 2.4
PointCNN 57.2 282.4 4.6
YOGO(KNN) 54.0 27.7 2.0
YOGO(Ball query) 53.8 24.0 2.0

For more detail, please refer to our paper: YOGO. The work is a follow-up work to SqueezeSegV3 and Visual Transformers. If you find this work useful for your research, please consider citing:

@misc{xu2021group,
      title={You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module}, 
      author={Chenfeng Xu and Bohan Zhai and Bichen Wu and Tian Li and Wei Zhan and Peter Vajda and Kurt Keutzer and Masayoshi Tomizuka},
      year={2021},
      eprint={2103.09975},
      archivePrefix={arXiv},
      primaryClass={cs.RO}
}

Related works:

@inproceedings{xu2020squeezesegv3,
  title={Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation},
  author={Xu, Chenfeng and Wu, Bichen and Wang, Zining and Zhan, Wei and Vajda, Peter and Keutzer, Kurt and Tomizuka, Masayoshi},
  booktitle={European Conference on Computer Vision},
  pages={1--19},
  year={2020},
  organization={Springer}
}
@misc{wu2020visual,
      title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, 
      author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
      year={2020},
      eprint={2006.03677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

YOGO is released under the BSD license (See LICENSE for details).

Installation

The instructions are tested on Ubuntu 16.04 with python 3.6 and Pytorch 1.5 with GPU support.

  • Clone the YOGO repository:
git clone https://github.com/chenfengxu714/YOGO.git
  • Use pip to install required Python packages:
pip install -r requirements.txt
  • Install KNN library:
cd convpoint/knn/
python setup.py install --home='.'

Pre-trained Models

The pre-trained YOGO is avalible at Google Drive, you can directly download them.

Inference

To infer the predictions for the entire dataset:

python train.py [config-file] --devices [gpu-ids] --evaluate --configs.evaluate.best_checkpoint_path [path to the model checkpoint]

for example, you can run the below command for ShapeNet inference:

python train.py configs/shapenet/yogo/yogo.py --devices 0 --evaluate --configs.evaluate.best_checkpoint_path ./runs/shapenet/best.pth

Training:

To train the model:

python train.py [config-file] --devices [gpu-ids] --evaluate --configs.evaluate.best_checkpoint_path [path to the model checkpoint]

for example, you can run the below command for ShapeNet training:

python train.py configs/shapenet/yogo/yogo.py --devices 0

You can run the below command for multi-gpu training:

python train.py configs/shapenet/yogo/yogo.py --devices 0,1,2,3

Note that we conduct training on Titan RTX gpu, you can modify the batch size according your GPU memory, the performance is slightly different.

Acknowledgement:

The code is modified from PVCNN and the code for KNN is from Pointconv.

You might also like...
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Jittor implementation of PCT:Point Cloud Transformer
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation of NeurIPS 2021 paper:
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Code for
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Point-NeRF: Point-based Neural Radiance Fields
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Comments
  • Regarding W^ matrices dimensionality.

    Regarding W^ matrices dimensionality.

    Hi, in your paper, the W^q, v, k matrices are 256 by 256 (Ct by Ct). However, in your code for s3dis yoga, the W^k,q matrices are 256 by 128.

    Could you clarify on the dimensionality of the W^ matrices

    (stage1): Sequential( (0): RIM_ResidualBlock( (res_connect): Sequential( (0): Conv1d(32, 64, kernel_size=(1,), stride=(1,)) (1): InstanceNorm1d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) (vt1): RIM( (transformer): Transformer( (k_conv): ModuleList( (0): Sequential( (0): Conv1d(256, 128, kernel_size=(1,), stride=(1,), bias=False) (1): InstanceNorm1d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (q_conv): ModuleList( (0): Sequential( (0): Conv1d(256, 128, kernel_size=(1,), stride=(1,), bias=False) (1): InstanceNorm1d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (v_conv): ModuleList( (0): Sequential( (0): Conv1d(256, 256, kernel_size=(1,), stride=(1,), bias=False) (1): InstanceNorm1d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (kqv_bn): ModuleList( (0): InstanceNorm1d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) (kq_matmul): ModuleList( (0): MatMul() ) (kqv_matmul): ModuleList( (0): MatMul() ) (ff_conv): ModuleList( (0): Sequential( (0): Conv1d(256, 512, kernel_size=(1,), stride=(1,), bias=False) (1): InstanceNorm1d(512, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (2): ReLU(inplace=True) (3): Conv1d(512, 256, kernel_size=(1,), stride=(1,), bias=False) (4): InstanceNorm1d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) )

    opened by TangZJ 1
  • error occurs when running

    error occurs when running " from modules.functional.backend import _backend "

    Hello! When running " from modules.functional.backend import _backend ", I encounter the following error :

    S(}8ZFG7OM6R2B)Y_R4K7`J

    It may result from the wrong version. Can you provide the versions about the pytorch, nvcc, etc to run this repostory?

    I am using pytorch 1.11. And the "ncvv -V" shows :

    7V{V ~SPM1Q_TS8_M5(YD20

    while nvidia-smi shows :

    IXDO36BG50UI 5_U_KFA3M3

    I wonder how to correctly run the code to import the corresponding functions about pvcnn_backend. Sincerely looking forward to your help.

    opened by Carbord 0
Owner
Chenfeng Xu
A Ph.D. student in UC Berkeley.
Chenfeng Xu
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 9, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 2, 2023
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

null 78 Dec 27, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
A list of papers about point cloud based place recognition, also known as loop closure detection in SLAM (processing)

A list of papers about point cloud based place recognition, also known as loop closure detection in SLAM (processing)

Xin Kong 17 May 16, 2021
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 9, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

null 153 Dec 14, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 10 Nov 24, 2021
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 4, 2023