Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

Related tags

Deep Learning CCOP
Overview

CCOP


Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning

Requirement


  1. Install OpenSelfSup
  2. Install Detectron2, Do not forget to setup Detectron2 datasets!!!
  3. Install Kornia for fast data augmentation

Usage


Run Selective Search

% remember to setup the dataset paths
python tools/selective_search.py

Setup dataset

mkdir data
ln -s path_to_coco data

Run CCOP pre-training and Mask R-CNN benchmark

% training a ResNet-50 model with 8 GPU
zsh tools/det_train_benchmark.sh configs/selfsup/ccop/r50_d2.py 8 path_to_output

Citation


@article{yang2021contrastive,
  title={Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning},
  author={Yang, Chenhongyi and Huang, Lichao and Crowley, Elliot J},
  journal={arXiv preprint arXiv:2111.13651},
  year={2021}
}
You might also like...
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

Code for our ACL 2021 paper
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Comments
  • One missing configuration setting

    One missing configuration setting

    Thanks for your great work and releasing the code!

    During reproducing the experimental results, I noticed a tiny discrepancy between your code and the standard Mask R-CNN fine-tuning:

    In your configuration file benchmarks/detection/configs/coco_R_50_FPN_1x_infomin.yaml, the configuration MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION is not set. As a result, Detectron2 will use the default setting MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14, from https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py. However, this does not match the standard Mask R-CNN setting MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 7. Please see https://github.com/facebookresearch/detectron2/blob/main/configs/Base-RCNN-FPN.yaml.

    I'm not sure which Detectron2 version you were previously using, so this difference could be a result of Detectron2 updates as well.

    opened by Friedrich1006 2
Owner
Chenhongyi Yang
Ph.D. student at the University of Edinburgh.
Chenhongyi Yang
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 8, 2023
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 5, 2023
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

null 54 Dec 15, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022