COIN the currently largest dataset for comprehensive instruction video analysis.

Overview

COIN Dataset

COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e., car polishing, make French fries) related to 12 domains (i.e., vehicle, dish). All videos are collected from YouTube and annotated with an efficient toolbox.

Authors and Contributors

Yansong Tang*, Dajun Ding, Yongming Rao*, Yu Zheng*, Danyang Zhang*, Lili Zhao, Jiwen Lu*, Jie Zhou*, Yongxiang Lian*, Yao Li, Jiali Sun, Chang Liu, Dongge You, Zirun Yang, Jiaojiao Ge, Jiayun Wang*

  • *Tsinghua University
  • Meitu Inc.

Contact: [email protected]

License

You may use the codes and files for research only, including sharing and modifying the material. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Dataset and Annotation

Taxonomy

The COIN is organized in a hierarchical structure, which contains three levels: domain, task and step. The corresponding relationship can be found at taxonomy [link]. We provide the taxonomy file of COIN in csv format. Below, we show a small part of the texonomy stored in taxonomy.xlsx:

domain_target_mapping target_action_mapping
Domains Targets
... ...
Vehicle ChangeCarTire
Vehicle InstallLicensePlateFrame
... ...
Gadgets ReplaceCDDriveWithSSD
Target Id Target Label Action Id Action Label
... ... ... ...
13 ChangeCarTire 259 unscrew the screw
13 ChangeCarTire 260 jack up the car
13 ChangeCarTire 261 remove the tire
13 ChangeCarTire 262 put on the tire
13 ChangeCarTire 263 tighten the screws
... ... ... ...

We store the url of video and their annotation in JSON format, which can be accessed with the link [COIN](Project link page). The json file is similar to that of ActivityNet. Below, we show an example entry from the key field "database":

"LtRSn-ntcLY": {
			"duration": 131.0309,
			"class": "ReplaceCDDriveWithSSD",
			"video_url": "https://www.youtube.com/embed/LtRSn-ntcLY",
			"start": 56.640895694775196,
			"annotation": [
				{
					"id": "212",
					"segment": [
						60.0,
						69.0
					],
					"label": "take out the laptop CD drive"
				},
				{
					"id": "216",
					"segment": [
						71.0,
						82.0
					],
					"label": "insert the hard disk tray into the position of the CD drive"
				}
			],
			"subset": "training",
			"end": 85.714362947023,
			"recipe_type": 131
		}

From the entry, we can easily retrieve the Youtube ID, duration, ROI and procedure information of the video. The field "annotation" comprises of a list of all annotated procedures within the video. The field "class" and sub-field "id" correspond to "task" and "step" of the taxonomy respectively.

File Structure

The annotation information is saved in COIN.json.

Field Name Type Example Description
database string - Key filed of the annotation file.
- string LtRSn-ntcLY Youtube ID of the video.
duration float 56.640895694775196 Duration of the video in seconds.
class string ReplaceCDDriveWithSSD Name of the task in the video.
video_url string https://www.youtube.com/embed/LtRSn-ntcLY Url of the video.
start float 56.640895694775196 Start time of the ROI of the video.
end float 85.714362947023 End time of the ROI of the video.
subset string training or validation Subset of the video.
recipe_type int 131 ID number of the task.
annotation string - Annotation information of the video.
annotation:id int 212 ID number of the procedure.
annotation:label string take out the laptop CD drive Name of the procedure.
annotation:segment list of float (len=2) [60.0,69.0] Start and end time of the procedure.
Comments
  • ERROR VideoUnavailable  A lot of links are unavailable

    ERROR VideoUnavailable A lot of links are unavailable

    HI, Thank you for your contribution! There are actually many videos unavailable since some video may be deleted by the author. Actually, I only downloaded 10927 videos. So we could not download them all, right?

    opened by Aanonymity3930 2
  • Invalid link for S3D features

    Invalid link for S3D features

    Hi, The link for S3D features is invalid now, could you check it? https://drive.google.com/file/d/1zI4sxtWCccmcZ3alMUVpsgszTMmB0Bc5/view?usp=sharing

    Thanks!!

    opened by FOXamber 0
  • Is any narration set available?

    Is any narration set available?

    Hi,

    As I understand, COIN contains only actions to corresponding segments of video such as [12s - 15s] -> cut tomato. Does the datasets contain any narration like [12s - 15s] -> cut tomato / take a chopping board and a tomato, then cut tomato on the board etc..

    opened by EmreOzkose 0
  • Invalid link for the features

    Invalid link for the features

    Hi,

    Thank you for providing this nice dataset. The links for downloading the features are invalid right now, could you please check and fix it?

    Thanks!

    opened by eitan159 0
  • Invalid link for the Features

    Invalid link for the Features

    Hi,

    Thank you for providing this nice dataset. The link for downloading the features by Mega is invalid right now, could you please check and fix it?

    Thanks!

    opened by dairui01 5
Owner
null
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-library. These sub-libraries include both function-based and class-based transforms, composition operators, and have the option to provide metadata about the transform applied, including its intensity.

Facebook Research 4.6k Jan 9, 2023
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN ?? This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

null 2 Dec 26, 2021
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference Scheduling, Job Shop Scheduling, Bin Packing and many more planning problems.

OptaPy 211 Jan 2, 2023
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

null 1 Jan 23, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 2, 2023
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

?? Collection of Kaggle Solutions and Ideas ??

Farid Rashidi 2.3k Jan 8, 2023
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

VIG@R&L 603 Jan 5, 2023
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 7, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

null 9 Jan 12, 2022