Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Overview

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Project Page | Paper

Yifan Peng*, Suyeon Choi*, Jonghyun Kim, Gordon Wetzstein

* Authors contributed equally.

This repository contains the scripts associated with the Science Advances paper "Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration"

Getting Started

First, load the submodules in neural_holography folder with

git submodule init
git submodule update

Also, you can modify the spectrum information in spectra folder based on measured spectrum from your own setup.

High-level structure

The code is organized as follows:

  • main.py generates phase patterns with our partially coherent propagatator via SGD/CITL
  • propagation_partial.py contains the partially coherent wave propagation operator implementation.
  • spectrum.py contains utility functions for reading measured spectra.

./neural-holography/: See here for descriptions.

Running the test

The SLM phase patterns can be reproduced with

SGD with the partially coherent model:

python main.py --channel=0 --method=SGD --prop_model=model --root_path=./phases

SGD with Camera-in-the-loop optimization:

python main.py --channel=0 --method=SGD --prop_model=model --citl=True --root_path=./phases

Citation

If you find our work useful in your research, please cite:

@article{Peng:2021:PartiallyCoherent,
author = {Yifan Peng  and Suyeon Choi  and Jonghyun Kim  and Gordon Wetzstein },
title = {Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration},
journal = {Science Advances},
volume = {7},
number = {46},
pages = {eabg5040},
year = {2021},
doi = {10.1126/sciadv.abg5040}

License

This project is licensed under the following license, with exception of the file "data/1.png", which is licensed under the CC-BY license.

Copyright (c) 2021, Stanford University

All rights reserved.

Redistribution and use in source and binary forms for academic and other non-commercial purposes with or without modification, are permitted provided that the following conditions are met:

  • Redistributions of source code, including modified source code, must retain the above copyright notice, this list of conditions and the following disclaimer.

  • Redistributions in binary form or a modified form of the source code must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

  • Neither the name of The Leland Stanford Junior University, any of its trademarks, the names of its employees, nor contributors to the source code may be used to endorse or promote products derived from this software without specific prior written permission.

  • Where a modified version of the source code is redistributed publicly in source or binary forms, the modified source code must be published in a freely accessible manner, or otherwise redistributed at no charge to anyone requesting a copy of the modified source code, subject to the same terms as this agreement.

THIS SOFTWARE IS PROVIDED BY THE TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE LELAND STANFORD JUNIOR UNIVERSITY OR ITS TRUSTEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contact

If you have any questions, please contact

You might also like...
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

Temporally Coherent GAN SIGGRAPH project.
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Camera-caps - Examine the camera capabilities for V4l2 cameras
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Code for
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

null 57 Nov 14, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

null 116 Dec 12, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

null 71 Dec 19, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to help capture them. The implementation of CowHerd is based on the Crafter environment.

Danijar Hafner 6 Mar 6, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 1, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

null 165 Dec 17, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022