ConvMAE
ConvMAE: Masked Convolution Meets Masked Autoencoders
Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1,
1 Shanghai AI Laboratory, 2 MMLab, CUHK, 3 Sensetime Research.
This repo is the official implementation of ConvMAE: Masked Convolution Meets Masked Autoencoders. It currently concludes codes and models for the following tasks:
ImageNet Pretrain: See PRETRAIN.md.
ImageNet Finetune: See FINETUNE.md.
Object Detection: See DETECTION.md.
Semantic Segmentation: See SEGMENTATION.md.
Updates
16/May/2022
The supported codes and models for COCO object detection and instance segmentation are available.
11/May/2022
- Pretrained models on ImageNet-1K for ConvMAE.
- The supported codes and models for ImageNet-1K finetuning and linear probing are provided.
08/May/2022
The preprint version is public at arxiv.
Introduction
ConvMAE framework demonstrates that multi-scale hybrid convolution-transformer can learn more discriminative representations via the mask auto-encoding scheme.
- We present the strong and efficient self-supervised framework ConvMAE, which is easy to implement but show outstanding performances on downstream tasks.
- ConvMAE naturally generates hierarchical representations and exhibit promising performances on object detection and segmentation.
- ConvMAE-Base improves the ImageNet finetuning accuracy by 1.4% compared with MAE-Base. On object detection with Mask-RCNN, ConvMAE-Base achieves 53.2 box AP and 47.1 mask AP with a 25-epoch training schedule while MAE-Base attains 50.3 box AP and 44.9 mask AP with 100 training epochs. On ADE20K with UperNet, ConvMAE-Base surpasses MAE-Base by 3.6 mIoU (48.1 vs. 51.7).
Pretrain on ImageNet-1K
The following table provides pretrained checkpoints and logs used in the paper.
ConvMAE-Base | |
---|---|
pretrained checkpoints | download |
logs | download |
Main Results on ImageNet-1K
Models | #Params(M) | Supervision | Encoder Ratio | Pretrain Epochs | FT acc@1(%) | LIN acc@1(%) | FT logs/weights | LIN logs/weights |
---|---|---|---|---|---|---|---|---|
BEiT | 88 | DALLE | 100% | 300 | 83.0 | 37.6 | - | - |
MAE | 88 | RGB | 25% | 1600 | 83.6 | 67.8 | - | - |
SimMIM | 88 | RGB | 100% | 800 | 84.0 | 56.7 | - | - |
MaskFeat | 88 | HOG | 100% | 300 | 83.6 | N/A | - | - |
data2vec | 88 | RGB | 100% | 800 | 84.2 | N/A | - | - |
ConvMAE-B | 88 | RGB | 25% | 1600 | 85.0 | 70.9 | log/weight |
Main Results on COCO
Mask R-CNN
Models | Pretrain | Pretrain Epochs | Finetune Epochs | #Params(M) | FLOPs(T) | box AP | mask AP | logs/weights |
---|---|---|---|---|---|---|---|---|
Swin-B | IN21K w/ labels | 300 | 36 | 109 | 0.7 | 51.4 | 45.4 | - |
Swin-L | IN21K w/ labels | 300 | 36 | 218 | 1.1 | 52.4 | 46.2 | - |
MViTv2-B | IN21K w/ labels | 300 | 36 | 73 | 0.6 | 53.1 | 47.4 | - |
MViTv2-L | IN21K w/ labels | 300 | 36 | 239 | 1.3 | 53.6 | 47.5 | - |
Benchmarking-ViT-B | IN1K w/o labels | 1600 | 100 | 118 | 0.9 | 50.4 | 44.9 | - |
Benchmarking-ViT-L | IN1K w/o labels | 1600 | 100 | 340 | 1.9 | 53.3 | 47.2 | - |
ViTDet | IN1K w/o labels | 1600 | 100 | 111 | 0.8 | 51.2 | 45.5 | - |
MIMDet-ViT-B | IN1K w/o labels | 1600 | 36 | 127 | 1.1 | 51.5 | 46.0 | - |
MIMDet-ViT-L | IN1K w/o labels | 1600 | 36 | 345 | 2.6 | 53.3 | 47.5 | - |
ConvMAE-B | IN1K w/o lables | 1600 | 25 | 104 | 0.9 | 53.2 | 47.1 | log/weight |
Main Results on ADE20K
UperNet
Models | Pretrain | Pretrain Epochs | Finetune Iters | #Params(M) | FLOPs(T) | mIoU | logs/weights |
---|---|---|---|---|---|---|---|
DeiT-B | IN1K w/ labels | 300 | 16K | 163 | 0.6 | 45.6 | - |
Swin-B | IN1K w/ labels | 300 | 16K | 121 | 0.3 | 48.1 | - |
MoCo V3 | IN1K | 300 | 16K | 163 | 0.6 | 47.3 | - |
DINO | IN1K | 400 | 16K | 163 | 0.6 | 47.2 | - |
BEiT | IN1K+DALLE | 1600 | 16K | 163 | 0.6 | 47.1 | - |
PeCo | IN1K | 300 | 16K | 163 | 0.6 | 46.7 | - |
CAE | IN1K+DALLE | 800 | 16K | 163 | 0.6 | 48.8 | - |
MAE | IN1K | 1600 | 16K | 163 | 0.6 | 48.1 | - |
ConvMAE-B | IN1K | 1600 | 16K | 153 | 0.6 | 51.7 | soon |
Main Results on Kinetics-400
Models | Pretrain Epochs | Finetune Epochs | #Params(M) | Top1 | Top5 | logs/weights |
---|---|---|---|---|---|---|
VideoMAE-B | 200 | 100 | 87 | 77.8 | ||
VideoMAE-B | 800 | 100 | 87 | 79.4 | ||
VideoMAE-B | 1600 | 100 | 87 | 79.8 | ||
VideoMAE-B | 1600 | 100 (w/ Repeated Aug) | 87 | 80.7 | 94.7 | |
SpatioTemporalLearner-B | 800 | 150 (w/ Repeated Aug) | 87 | 81.3 | 94.9 | |
VideoConvMAE-B | 200 | 100 | 86 | 80.1 | 94.3 | Soon |
VideoConvMAE-B | 800 | 100 | 86 | 81.7 | 95.1 | Soon |
VideoConvMAE-B-MSD | 800 | 100 | 86 | 82.7 | 95.5 | Soon |
Main Results on Something-Something V2
Models | Pretrain Epochs | Finetune Epochs | #Params(M) | Top1 | Top5 | logs/weights |
---|---|---|---|---|---|---|
VideoMAE-B | 200 | 40 | 87 | 66.1 | ||
VideoMAE-B | 800 | 40 | 87 | 69.3 | ||
VideoMAE-B | 2400 | 40 | 87 | 70.3 | ||
VideoConvMAE-B | 200 | 40 | 86 | 67.7 | 91.2 | Soon |
VideoConvMAE-B | 800 | 40 | 86 | 69.9 | 92.4 | Soon |
VideoConvMAE-B-MSD | 800 | 40 | 86 | 70.7 | 93.0 | Soon |
Getting Started
Prerequisites
- Linux
- Python 3.7+
- CUDA 10.2+
- GCC 5+
Training and evaluation
- See PRETRAIN.md for pretraining.
- See FINETUNE.md for pretrained model finetuning and linear probing.
- See DETECTION.md for using pretrained backbone on Mask RCNN.
- See SEGMENTATION.md for using pretrained backbone on UperNet.
Acknowledgement
The pretraining and finetuning of our project are based on DeiT and MAE. The object detection and semantic segmentation parts are based on MIMDet and MMSegmentation respectively. Thanks for their wonderful work.
License
ConvMAE is released under the MIT License.
Citation
@article{gao2022convmae,
title={ConvMAE: Masked Convolution Meets Masked Autoencoders},
author={Gao, Peng and Ma, Teli and Li, Hongsheng and Dai, Jifeng and Qiao, Yu},
journal={arXiv preprint arXiv:2205.03892},
year={2022}
}