High-fidelity 3D Model Compression based on Key Spheres

Overview

High-fidelity 3D Model Compression based on Key Spheres

This repository contains the implementation of the paper:

Yuanzhan Li, Yuqi Liu, Yujie Lu, Siyu Zhang, Shen Cai∗, and Yanting Zhang. High-fidelity 3D Model Compression based on Key Spheres. Accepted by Data Compression Conference (DCC) 2022 as a full paper. Paper pdf

Methodology

Training a specific network for each 3D model to predict the signed distance function (SDF), which individually embeds its shape, can realize compressed representation and reconstruction of objects by storing fewer network (and possibly latent) parameters. However, it is difficult for the state-of-the-art methods NI [1] and NGLOD [2] to properly reconstruct complex objects with fewer network parameters. The methodology we adopt is to utilize explicit key spheres [3] as network input to reduce the difficulty of fitting global and local shapes. By inputting the spatial information ofmultiple spheres which imply rough shapes (SDF) of an object, the proposed method can significantly improve the reconstruction accuracy with a negligible storage cost.An example is shown in Fig. 1. Compared to the previous works, our method achieves the high-fidelity and high-compression coding and reconstruction for most of 3D objects in the test dataset. image

As key spheres imply the rough shape and can impose constraints on local SDF values, the fitting difficulty of network is significantly reduced. Fig. 2 shows fitting SDF comparison of three methods to a 2D bunny image. image

[1] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson, “On the effectiveness ofweight-encoded neural implicit 3d shapes,” arXiv:2009.09808, 2020.

[2] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler, “Neural geometric level of detail: real-time rendering with implicit 3d shapes,” in CVPR, 2021.

[3] Siyu Zhang, Hui Cao, Yuqi Liu, Shen Cai, Yanting Zhang, Yuanzhan Li, and Xiaoyu Chi, “SN-Graph: a minimalist 3d object representation for classification,” in ICME, 2021.

[4] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and E. Puppo, “Practical quad mesh simplification,” CGF, 29(2), 407–418, 2010.

Network

In order to make a fair comparison with NI and NGLOD respectively, this 29D point feature can be extracted in direct and latent ways based on key spheres. The direct point feature extraction (DPFE, see the upper branch of Fig. 3) only uses a single-layer MLP (4∗29) to upgrade the 4D input of each key sphere to a 29D feature. The latent point feature extraction (LPFE, see the lower branch in Fig. 3) is similar to the latent feature of grid points in NGLOD. The 29D sphere feature vector is obtained by training, which is stored in advance. image

Experiment

image image

Results

For a mesh model, we provide the corresponding network model using DPLE branch. These models are trained with a 6∗32 MLP and 128 key spheres as input by default. The network model files are placed at ./results/models/, and their naming rules are a_b_c_d.pth, where a is the number of key spheres, b and c are the number and size of MLP layers, and d is the data name. If b and c are omitted, 6∗32 MLP is used.

Some reconstructed mesh models are also provided. They are reconstructed using the 128-resolution marching cube algorithm. You can find them in ./results/meshes/. Three models are shown below. More reconstructed results in Thingi32 dataset can be seen in Release files. image image image

Dataset

We use ShapeNet and Thingi10k datasets, both of which are available from their official website. Thingi32 is composed of 32 simple shapes in Thingi10K. ShapeNet150 contains 150 shapes in the ShapeNet dataset.

ShapeNet

You can download them at https://shapenet.org/download/shapenetcore

Thingi10k

You can download them at https://ten-thousand-models.appspot.com/

Thingi32 and ShapeNet150

You can check their name at https://github.com/nv-tlabs/nglod/issues/4

Getting started

Ubuntu and CUDA version

We verified that it worked on ubuntu18.04 cuda10.2

Python dependencies

The easiest way to get started is to create a virtual Python 3.6 environment via our environment.yml:

conda env create -f environment.yml
conda activate torch_over
cd ./submodules/miniball
python setup.py install

Training

python train_series.py

Evaluation

python eval.py

If you want to generate a reconstructed mesh through the MC algorithm

python modelmesher.py 

Explanation

  1. NeuralImplicit.py corresponds to the first architecture in the paper, NeuralImplicit_1.py corresponds to the second architecture.
  2. We provide sphere files for thingi10k objects at ./sphere/thingi10kSphere/.
  3. If you want to generate key spheres for your own models, check out https://github.com/cscvlab/SN-Graph

Third-Party Libraries

This code includes code derived from 3 third-party libraries

https://github.com/nv-tlabs/nglod https://github.com/u2ni/ICML2021

License

This project is licensed under the terms of the MIT license (see LICENSE for details).

You might also like...
A two-stage U-Net for high-fidelity denoising of historical recordings
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

 SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

MMRazor: a model compression toolkit for model slimming and AutoML
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

 From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement.

 UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

Releases(thing32)
Owner
null
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

null 114 Dec 10, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 8, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 6, 2023
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 4, 2023
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 54 Aug 30, 2021