LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation
Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zhong
byThis is an initial benchmark for Unsupervised Domain Adaptation.
Getting Started
Requirements:
- pytorch >= 1.7.0
- python >=3.6
- pandas >= 1.1.5
Prepare LoveDA Dataset
ln -s </path/to/LoveDA> ./LoveDA
Evaluate CBST Model on the predict set
weights
1. Download the pre-trained2. Move weight file to log directory
mkdir -vp ./log/
mv ./CBST_2Urban.pth ./log/CBST_2Urban.pth
3. Evaluate on Urban test set
bash ./scripts/predict_cbst.sh
Submit your test results on LoveDA Unsupervised Domain Adaptation Challenge and you will get your Test score.
Train CBST Model
From Rural to Urban
bash ./scripts/train_cbst.sh
Eval CBST Model on Urban val set
bash ./scripts/eval_cbst.sh