CUDA_VISIBLE_DEVICES=1,2 ./tools/dist_train.sh configs/ReDet/ReDet_re50_refpn_1x_dota1.py 2
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
ReResNet Orientation: 8 Fix Params: False
ReResNet Orientation: 8 Fix Params: False
2021-05-19 21:40:15,266 - INFO - Distributed training: True
/opt/conda/conda-bld/pytorch_1573049310284/work/aten/src/ATen/native/IndexingUtils.h:20: UserWarning: indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead.
/opt/conda/conda-bld/pytorch_1573049310284/work/aten/src/ATen/native/IndexingUtils.h:20: UserWarning: indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead.
/opt/conda/conda-bld/pytorch_1573049310284/work/aten/src/ATen/native/IndexingUtils.h:20: UserWarning: indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead.
/opt/conda/conda-bld/pytorch_1573049310284/work/aten/src/ATen/native/IndexingUtils.h:20: UserWarning: indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead.
/opt/conda/conda-bld/pytorch_1573049310284/work/aten/src/ATen/native/IndexingUtils.h:20: UserWarning: indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead.
/opt/conda/conda-bld/pytorch_1573049310284/work/aten/src/ATen/native/IndexingUtils.h:20: UserWarning: indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead.
2021-05-19 21:40:42,380 - INFO - load model from: /home/neo/desktop/ReDet/tools/work_dirs/ReResNet_pretrain/re_resnet50_c8_batch256-12933bc2.pth
loading annotations into memory...
2021-05-19 21:40:42,542 - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: backbone.conv1.weights, backbone.conv1.basisexpansion.block_expansion('irrep_0', 'regular').sampled_basis, backbone.bn1.indices_8, backbone.bn1.batch_norm_[8].weight, backbone.bn1.batch_norm_[8].bias, backbone.bn1.batch_norm_[8].running_mean, backbone.bn1.batch_norm_[8].running_var, backbone.bn1.batch_norm_[8].num_batches_tracked, backbone.layer1.0.conv1.weights, backbone.layer1.0.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.0.bn1.indices_8, backbone.layer1.0.bn1.batch_norm_[8].weight, backbone.layer1.0.bn1.batch_norm_[8].bias, backbone.layer1.0.bn1.batch_norm_[8].running_mean, backbone.layer1.0.bn1.batch_norm_[8].running_var, backbone.layer1.0.bn1.batch_norm_[8].num_batches_tracked, backbone.layer1.0.conv2.weights, backbone.layer1.0.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.0.bn2.indices_8, backbone.layer1.0.bn2.batch_norm_[8].weight, backbone.layer1.0.bn2.batch_norm_[8].bias, backbone.layer1.0.bn2.batch_norm_[8].running_mean, backbone.layer1.0.bn2.batch_norm_[8].running_var, backbone.layer1.0.bn2.batch_norm_[8].num_batches_tracked, backbone.layer1.0.conv3.weights, backbone.layer1.0.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.0.bn3.indices_8, backbone.layer1.0.bn3.batch_norm_[8].weight, backbone.layer1.0.bn3.batch_norm_[8].bias, backbone.layer1.0.bn3.batch_norm_[8].running_mean, backbone.layer1.0.bn3.batch_norm_[8].running_var, backbone.layer1.0.bn3.batch_norm_[8].num_batches_tracked, backbone.layer1.0.downsample.0.weights, backbone.layer1.0.downsample.0.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.0.downsample.1.indices_8, backbone.layer1.0.downsample.1.batch_norm_[8].weight, backbone.layer1.0.downsample.1.batch_norm_[8].bias, backbone.layer1.0.downsample.1.batch_norm_[8].running_mean, backbone.layer1.0.downsample.1.batch_norm_[8].running_var, backbone.layer1.0.downsample.1.batch_norm_[8].num_batches_tracked, backbone.layer1.1.conv1.weights, backbone.layer1.1.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.1.bn1.indices_8, backbone.layer1.1.bn1.batch_norm_[8].weight, backbone.layer1.1.bn1.batch_norm_[8].bias, backbone.layer1.1.bn1.batch_norm_[8].running_mean, backbone.layer1.1.bn1.batch_norm_[8].running_var, backbone.layer1.1.bn1.batch_norm_[8].num_batches_tracked, backbone.layer1.1.conv2.weights, backbone.layer1.1.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.1.bn2.indices_8, backbone.layer1.1.bn2.batch_norm_[8].weight, backbone.layer1.1.bn2.batch_norm_[8].bias, backbone.layer1.1.bn2.batch_norm_[8].running_mean, backbone.layer1.1.bn2.batch_norm_[8].running_var, backbone.layer1.1.bn2.batch_norm_[8].num_batches_tracked, backbone.layer1.1.conv3.weights, backbone.layer1.1.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.1.bn3.indices_8, backbone.layer1.1.bn3.batch_norm_[8].weight, backbone.layer1.1.bn3.batch_norm_[8].bias, backbone.layer1.1.bn3.batch_norm_[8].running_mean, backbone.layer1.1.bn3.batch_norm_[8].running_var, backbone.layer1.1.bn3.batch_norm_[8].num_batches_tracked, backbone.layer1.2.conv1.weights, backbone.layer1.2.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.2.bn1.indices_8, backbone.layer1.2.bn1.batch_norm_[8].weight, backbone.layer1.2.bn1.batch_norm_[8].bias, backbone.layer1.2.bn1.batch_norm_[8].running_mean, backbone.layer1.2.bn1.batch_norm_[8].running_var, backbone.layer1.2.bn1.batch_norm_[8].num_batches_tracked, backbone.layer1.2.conv2.weights, backbone.layer1.2.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.2.bn2.indices_8, backbone.layer1.2.bn2.batch_norm_[8].weight, backbone.layer1.2.bn2.batch_norm_[8].bias, backbone.layer1.2.bn2.batch_norm_[8].running_mean, backbone.layer1.2.bn2.batch_norm_[8].running_var, backbone.layer1.2.bn2.batch_norm_[8].num_batches_tracked, backbone.layer1.2.conv3.weights, backbone.layer1.2.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer1.2.bn3.indices_8, backbone.layer1.2.bn3.batch_norm_[8].weight, backbone.layer1.2.bn3.batch_norm_[8].bias, backbone.layer1.2.bn3.batch_norm_[8].running_mean, backbone.layer1.2.bn3.batch_norm_[8].running_var, backbone.layer1.2.bn3.batch_norm_[8].num_batches_tracked, backbone.layer2.0.conv1.weights, backbone.layer2.0.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.0.bn1.indices_8, backbone.layer2.0.bn1.batch_norm_[8].weight, backbone.layer2.0.bn1.batch_norm_[8].bias, backbone.layer2.0.bn1.batch_norm_[8].running_mean, backbone.layer2.0.bn1.batch_norm_[8].running_var, backbone.layer2.0.bn1.batch_norm_[8].num_batches_tracked, backbone.layer2.0.conv2.weights, backbone.layer2.0.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.0.bn2.indices_8, backbone.layer2.0.bn2.batch_norm_[8].weight, backbone.layer2.0.bn2.batch_norm_[8].bias, backbone.layer2.0.bn2.batch_norm_[8].running_mean, backbone.layer2.0.bn2.batch_norm_[8].running_var, backbone.layer2.0.bn2.batch_norm_[8].num_batches_tracked, backbone.layer2.0.conv3.weights, backbone.layer2.0.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.0.bn3.indices_8, backbone.layer2.0.bn3.batch_norm_[8].weight, backbone.layer2.0.bn3.batch_norm_[8].bias, backbone.layer2.0.bn3.batch_norm_[8].running_mean, backbone.layer2.0.bn3.batch_norm_[8].running_var, backbone.layer2.0.bn3.batch_norm_[8].num_batches_tracked, backbone.layer2.0.downsample.0.weights, backbone.layer2.0.downsample.0.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.0.downsample.1.indices_8, backbone.layer2.0.downsample.1.batch_norm_[8].weight, backbone.layer2.0.downsample.1.batch_norm_[8].bias, backbone.layer2.0.downsample.1.batch_norm_[8].running_mean, backbone.layer2.0.downsample.1.batch_norm_[8].running_var, backbone.layer2.0.downsample.1.batch_norm_[8].num_batches_tracked, backbone.layer2.1.conv1.weights, backbone.layer2.1.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.1.bn1.indices_8, backbone.layer2.1.bn1.batch_norm_[8].weight, backbone.layer2.1.bn1.batch_norm_[8].bias, backbone.layer2.1.bn1.batch_norm_[8].running_mean, backbone.layer2.1.bn1.batch_norm_[8].running_var, backbone.layer2.1.bn1.batch_norm_[8].num_batches_tracked, backbone.layer2.1.conv2.weights, backbone.layer2.1.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.1.bn2.indices_8, backbone.layer2.1.bn2.batch_norm_[8].weight, backbone.layer2.1.bn2.batch_norm_[8].bias, backbone.layer2.1.bn2.batch_norm_[8].running_mean, backbone.layer2.1.bn2.batch_norm_[8].running_var, backbone.layer2.1.bn2.batch_norm_[8].num_batches_tracked, backbone.layer2.1.conv3.weights, backbone.layer2.1.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.1.bn3.indices_8, backbone.layer2.1.bn3.batch_norm_[8].weight, backbone.layer2.1.bn3.batch_norm_[8].bias, backbone.layer2.1.bn3.batch_norm_[8].running_mean, backbone.layer2.1.bn3.batch_norm_[8].running_var, backbone.layer2.1.bn3.batch_norm_[8].num_batches_tracked, backbone.layer2.2.conv1.weights, backbone.layer2.2.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.2.bn1.indices_8, backbone.layer2.2.bn1.batch_norm_[8].weight, backbone.layer2.2.bn1.batch_norm_[8].bias, backbone.layer2.2.bn1.batch_norm_[8].running_mean, backbone.layer2.2.bn1.batch_norm_[8].running_var, backbone.layer2.2.bn1.batch_norm_[8].num_batches_tracked, backbone.layer2.2.conv2.weights, backbone.layer2.2.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.2.bn2.indices_8, backbone.layer2.2.bn2.batch_norm_[8].weight, backbone.layer2.2.bn2.batch_norm_[8].bias, backbone.layer2.2.bn2.batch_norm_[8].running_mean, backbone.layer2.2.bn2.batch_norm_[8].running_var, backbone.layer2.2.bn2.batch_norm_[8].num_batches_tracked, backbone.layer2.2.conv3.weights, backbone.layer2.2.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.2.bn3.indices_8, backbone.layer2.2.bn3.batch_norm_[8].weight, backbone.layer2.2.bn3.batch_norm_[8].bias, backbone.layer2.2.bn3.batch_norm_[8].running_mean, backbone.layer2.2.bn3.batch_norm_[8].running_var, backbone.layer2.2.bn3.batch_norm_[8].num_batches_tracked, backbone.layer2.3.conv1.weights, backbone.layer2.3.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.3.bn1.indices_8, backbone.layer2.3.bn1.batch_norm_[8].weight, backbone.layer2.3.bn1.batch_norm_[8].bias, backbone.layer2.3.bn1.batch_norm_[8].running_mean, backbone.layer2.3.bn1.batch_norm_[8].running_var, backbone.layer2.3.bn1.batch_norm_[8].num_batches_tracked, backbone.layer2.3.conv2.weights, backbone.layer2.3.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.3.bn2.indices_8, backbone.layer2.3.bn2.batch_norm_[8].weight, backbone.layer2.3.bn2.batch_norm_[8].bias, backbone.layer2.3.bn2.batch_norm_[8].running_mean, backbone.layer2.3.bn2.batch_norm_[8].running_var, backbone.layer2.3.bn2.batch_norm_[8].num_batches_tracked, backbone.layer2.3.conv3.weights, backbone.layer2.3.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer2.3.bn3.indices_8, backbone.layer2.3.bn3.batch_norm_[8].weight, backbone.layer2.3.bn3.batch_norm_[8].bias, backbone.layer2.3.bn3.batch_norm_[8].running_mean, backbone.layer2.3.bn3.batch_norm_[8].running_var, backbone.layer2.3.bn3.batch_norm_[8].num_batches_tracked, backbone.layer3.0.conv1.weights, backbone.layer3.0.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.0.bn1.indices_8, backbone.layer3.0.bn1.batch_norm_[8].weight, backbone.layer3.0.bn1.batch_norm_[8].bias, backbone.layer3.0.bn1.batch_norm_[8].running_mean, backbone.layer3.0.bn1.batch_norm_[8].running_var, backbone.layer3.0.bn1.batch_norm_[8].num_batches_tracked, backbone.layer3.0.conv2.weights, backbone.layer3.0.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.0.bn2.indices_8, backbone.layer3.0.bn2.batch_norm_[8].weight, backbone.layer3.0.bn2.batch_norm_[8].bias, backbone.layer3.0.bn2.batch_norm_[8].running_mean, backbone.layer3.0.bn2.batch_norm_[8].running_var, backbone.layer3.0.bn2.batch_norm_[8].num_batches_tracked, backbone.layer3.0.conv3.weights, backbone.layer3.0.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.0.bn3.indices_8, backbone.layer3.0.bn3.batch_norm_[8].weight, backbone.layer3.0.bn3.batch_norm_[8].bias, backbone.layer3.0.bn3.batch_norm_[8].running_mean, backbone.layer3.0.bn3.batch_norm_[8].running_var, backbone.layer3.0.bn3.batch_norm_[8].num_batches_tracked, backbone.layer3.0.downsample.0.weights, backbone.layer3.0.downsample.0.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.0.downsample.1.indices_8, backbone.layer3.0.downsample.1.batch_norm_[8].weight, backbone.layer3.0.downsample.1.batch_norm_[8].bias, backbone.layer3.0.downsample.1.batch_norm_[8].running_mean, backbone.layer3.0.downsample.1.batch_norm_[8].running_var, backbone.layer3.0.downsample.1.batch_norm_[8].num_batches_tracked, backbone.layer3.1.conv1.weights, backbone.layer3.1.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.1.bn1.indices_8, backbone.layer3.1.bn1.batch_norm_[8].weight, backbone.layer3.1.bn1.batch_norm_[8].bias, backbone.layer3.1.bn1.batch_norm_[8].running_mean, backbone.layer3.1.bn1.batch_norm_[8].running_var, backbone.layer3.1.bn1.batch_norm_[8].num_batches_tracked, backbone.layer3.1.conv2.weights, backbone.layer3.1.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.1.bn2.indices_8, backbone.layer3.1.bn2.batch_norm_[8].weight, backbone.layer3.1.bn2.batch_norm_[8].bias, backbone.layer3.1.bn2.batch_norm_[8].running_mean, backbone.layer3.1.bn2.batch_norm_[8].running_var, backbone.layer3.1.bn2.batch_norm_[8].num_batches_tracked, backbone.layer3.1.conv3.weights, backbone.layer3.1.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.1.bn3.indices_8, backbone.layer3.1.bn3.batch_norm_[8].weight, backbone.layer3.1.bn3.batch_norm_[8].bias, backbone.layer3.1.bn3.batch_norm_[8].running_mean, backbone.layer3.1.bn3.batch_norm_[8].running_var, backbone.layer3.1.bn3.batch_norm_[8].num_batches_tracked, backbone.layer3.2.conv1.weights, backbone.layer3.2.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.2.bn1.indices_8, backbone.layer3.2.bn1.batch_norm_[8].weight, backbone.layer3.2.bn1.batch_norm_[8].bias, backbone.layer3.2.bn1.batch_norm_[8].running_mean, backbone.layer3.2.bn1.batch_norm_[8].running_var, backbone.layer3.2.bn1.batch_norm_[8].num_batches_tracked, backbone.layer3.2.conv2.weights, backbone.layer3.2.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.2.bn2.indices_8, backbone.layer3.2.bn2.batch_norm_[8].weight, backbone.layer3.2.bn2.batch_norm_[8].bias, backbone.layer3.2.bn2.batch_norm_[8].running_mean, backbone.layer3.2.bn2.batch_norm_[8].running_var, backbone.layer3.2.bn2.batch_norm_[8].num_batches_tracked, backbone.layer3.2.conv3.weights, backbone.layer3.2.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.2.bn3.indices_8, backbone.layer3.2.bn3.batch_norm_[8].weight, backbone.layer3.2.bn3.batch_norm_[8].bias, backbone.layer3.2.bn3.batch_norm_[8].running_mean, backbone.layer3.2.bn3.batch_norm_[8].running_var, backbone.layer3.2.bn3.batch_norm_[8].num_batches_tracked, backbone.layer3.3.conv1.weights, backbone.layer3.3.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.3.bn1.indices_8, backbone.layer3.3.bn1.batch_norm_[8].weight, backbone.layer3.3.bn1.batch_norm_[8].bias, backbone.layer3.3.bn1.batch_norm_[8].running_mean, backbone.layer3.3.bn1.batch_norm_[8].running_var, backbone.layer3.3.bn1.batch_norm_[8].num_batches_tracked, backbone.layer3.3.conv2.weights, backbone.layer3.3.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.3.bn2.indices_8, backbone.layer3.3.bn2.batch_norm_[8].weight, backbone.layer3.3.bn2.batch_norm_[8].bias, backbone.layer3.3.bn2.batch_norm_[8].running_mean, backbone.layer3.3.bn2.batch_norm_[8].running_var, backbone.layer3.3.bn2.batch_norm_[8].num_batches_tracked, backbone.layer3.3.conv3.weights, backbone.layer3.3.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.3.bn3.indices_8, backbone.layer3.3.bn3.batch_norm_[8].weight, backbone.layer3.3.bn3.batch_norm_[8].bias, backbone.layer3.3.bn3.batch_norm_[8].running_mean, backbone.layer3.3.bn3.batch_norm_[8].running_var, backbone.layer3.3.bn3.batch_norm_[8].num_batches_tracked, backbone.layer3.4.conv1.weights, backbone.layer3.4.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.4.bn1.indices_8, backbone.layer3.4.bn1.batch_norm_[8].weight, backbone.layer3.4.bn1.batch_norm_[8].bias, backbone.layer3.4.bn1.batch_norm_[8].running_mean, backbone.layer3.4.bn1.batch_norm_[8].running_var, backbone.layer3.4.bn1.batch_norm_[8].num_batches_tracked, backbone.layer3.4.conv2.weights, backbone.layer3.4.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.4.bn2.indices_8, backbone.layer3.4.bn2.batch_norm_[8].weight, backbone.layer3.4.bn2.batch_norm_[8].bias, backbone.layer3.4.bn2.batch_norm_[8].running_mean, backbone.layer3.4.bn2.batch_norm_[8].running_var, backbone.layer3.4.bn2.batch_norm_[8].num_batches_tracked, backbone.layer3.4.conv3.weights, backbone.layer3.4.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.4.bn3.indices_8, backbone.layer3.4.bn3.batch_norm_[8].weight, backbone.layer3.4.bn3.batch_norm_[8].bias, backbone.layer3.4.bn3.batch_norm_[8].running_mean, backbone.layer3.4.bn3.batch_norm_[8].running_var, backbone.layer3.4.bn3.batch_norm_[8].num_batches_tracked, backbone.layer3.5.conv1.weights, backbone.layer3.5.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.5.bn1.indices_8, backbone.layer3.5.bn1.batch_norm_[8].weight, backbone.layer3.5.bn1.batch_norm_[8].bias, backbone.layer3.5.bn1.batch_norm_[8].running_mean, backbone.layer3.5.bn1.batch_norm_[8].running_var, backbone.layer3.5.bn1.batch_norm_[8].num_batches_tracked, backbone.layer3.5.conv2.weights, backbone.layer3.5.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.5.bn2.indices_8, backbone.layer3.5.bn2.batch_norm_[8].weight, backbone.layer3.5.bn2.batch_norm_[8].bias, backbone.layer3.5.bn2.batch_norm_[8].running_mean, backbone.layer3.5.bn2.batch_norm_[8].running_var, backbone.layer3.5.bn2.batch_norm_[8].num_batches_tracked, backbone.layer3.5.conv3.weights, backbone.layer3.5.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer3.5.bn3.indices_8, backbone.layer3.5.bn3.batch_norm_[8].weight, backbone.layer3.5.bn3.batch_norm_[8].bias, backbone.layer3.5.bn3.batch_norm_[8].running_mean, backbone.layer3.5.bn3.batch_norm_[8].running_var, backbone.layer3.5.bn3.batch_norm_[8].num_batches_tracked, backbone.layer4.0.conv1.weights, backbone.layer4.0.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.0.bn1.indices_8, backbone.layer4.0.bn1.batch_norm_[8].weight, backbone.layer4.0.bn1.batch_norm_[8].bias, backbone.layer4.0.bn1.batch_norm_[8].running_mean, backbone.layer4.0.bn1.batch_norm_[8].running_var, backbone.layer4.0.bn1.batch_norm_[8].num_batches_tracked, backbone.layer4.0.conv2.weights, backbone.layer4.0.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.0.bn2.indices_8, backbone.layer4.0.bn2.batch_norm_[8].weight, backbone.layer4.0.bn2.batch_norm_[8].bias, backbone.layer4.0.bn2.batch_norm_[8].running_mean, backbone.layer4.0.bn2.batch_norm_[8].running_var, backbone.layer4.0.bn2.batch_norm_[8].num_batches_tracked, backbone.layer4.0.conv3.weights, backbone.layer4.0.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.0.bn3.indices_8, backbone.layer4.0.bn3.batch_norm_[8].weight, backbone.layer4.0.bn3.batch_norm_[8].bias, backbone.layer4.0.bn3.batch_norm_[8].running_mean, backbone.layer4.0.bn3.batch_norm_[8].running_var, backbone.layer4.0.bn3.batch_norm_[8].num_batches_tracked, backbone.layer4.0.downsample.0.weights, backbone.layer4.0.downsample.0.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.0.downsample.1.indices_8, backbone.layer4.0.downsample.1.batch_norm_[8].weight, backbone.layer4.0.downsample.1.batch_norm_[8].bias, backbone.layer4.0.downsample.1.batch_norm_[8].running_mean, backbone.layer4.0.downsample.1.batch_norm_[8].running_var, backbone.layer4.0.downsample.1.batch_norm_[8].num_batches_tracked, backbone.layer4.1.conv1.weights, backbone.layer4.1.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.1.bn1.indices_8, backbone.layer4.1.bn1.batch_norm_[8].weight, backbone.layer4.1.bn1.batch_norm_[8].bias, backbone.layer4.1.bn1.batch_norm_[8].running_mean, backbone.layer4.1.bn1.batch_norm_[8].running_var, backbone.layer4.1.bn1.batch_norm_[8].num_batches_tracked, backbone.layer4.1.conv2.weights, backbone.layer4.1.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.1.bn2.indices_8, backbone.layer4.1.bn2.batch_norm_[8].weight, backbone.layer4.1.bn2.batch_norm_[8].bias, backbone.layer4.1.bn2.batch_norm_[8].running_mean, backbone.layer4.1.bn2.batch_norm_[8].running_var, backbone.layer4.1.bn2.batch_norm_[8].num_batches_tracked, backbone.layer4.1.conv3.weights, backbone.layer4.1.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.1.bn3.indices_8, backbone.layer4.1.bn3.batch_norm_[8].weight, backbone.layer4.1.bn3.batch_norm_[8].bias, backbone.layer4.1.bn3.batch_norm_[8].running_mean, backbone.layer4.1.bn3.batch_norm_[8].running_var, backbone.layer4.1.bn3.batch_norm_[8].num_batches_tracked, backbone.layer4.2.conv1.weights, backbone.layer4.2.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.2.bn1.indices_8, backbone.layer4.2.bn1.batch_norm_[8].weight, backbone.layer4.2.bn1.batch_norm_[8].bias, backbone.layer4.2.bn1.batch_norm_[8].running_mean, backbone.layer4.2.bn1.batch_norm_[8].running_var, backbone.layer4.2.bn1.batch_norm_[8].num_batches_tracked, backbone.layer4.2.conv2.weights, backbone.layer4.2.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.2.bn2.indices_8, backbone.layer4.2.bn2.batch_norm_[8].weight, backbone.layer4.2.bn2.batch_norm_[8].bias, backbone.layer4.2.bn2.batch_norm_[8].running_mean, backbone.layer4.2.bn2.batch_norm_[8].running_var, backbone.layer4.2.bn2.batch_norm_[8].num_batches_tracked, backbone.layer4.2.conv3.weights, backbone.layer4.2.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, backbone.layer4.2.bn3.indices_8, backbone.layer4.2.bn3.batch_norm_[8].weight, backbone.layer4.2.bn3.batch_norm_[8].bias, backbone.layer4.2.bn3.batch_norm_[8].running_mean, backbone.layer4.2.bn3.batch_norm_[8].running_var, backbone.layer4.2.bn3.batch_norm_[8].num_batches_tracked, head.fc.weight, head.fc.bias
missing keys in source state_dict: layer3.2.conv1.filter, layer1.0.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.2.bn3.batch_norm_[8].running_mean, layer1.1.bn2.indices_8, layer1.0.conv1.filter, layer3.1.conv3.weights, layer1.0.bn1.batch_norm_[8].bias, layer4.0.bn3.batch_norm_[8].running_var, layer4.0.downsample.1.indices_8, layer3.4.bn2.batch_norm_[8].bias, layer1.0.downsample.0.weights, layer4.1.bn2.indices_8, layer3.4.bn3.batch_norm_[8].running_var, layer4.0.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.3.bn2.batch_norm_[8].running_mean, layer3.3.bn1.indices_8, layer2.1.bn2.batch_norm_[8].running_var, layer3.3.conv3.weights, layer3.4.bn3.batch_norm_[8].bias, layer1.1.conv1.weights, conv1.basisexpansion.block_expansion('irrep_0', 'regular').sampled_basis, layer2.3.conv2.weights, layer4.0.downsample.1.batch_norm_[8].running_var, layer1.0.bn3.batch_norm_[8].bias, layer3.2.conv2.filter, layer2.1.bn2.batch_norm_[8].bias, layer4.2.bn2.batch_norm_[8].running_mean, layer3.1.bn1.batch_norm_[8].bias, layer3.4.bn2.indices_8, layer3.4.conv2.weights, layer1.1.conv3.filter, layer2.3.bn1.batch_norm_[8].weight, layer1.0.bn2.batch_norm_[8].weight, layer3.2.bn2.batch_norm_[8].weight, layer3.5.bn1.indices_8, layer4.2.bn1.batch_norm_[8].bias, layer4.2.conv2.filter, layer4.1.bn1.batch_norm_[8].bias, layer3.4.bn1.indices_8, layer2.3.conv3.weights, layer2.1.bn3.batch_norm_[8].bias, layer1.0.bn3.batch_norm_[8].running_var, layer2.0.downsample.1.batch_norm_[8].bias, layer2.3.bn2.indices_8, layer4.1.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.0.downsample.0.weights, layer2.3.bn2.batch_norm_[8].running_var, layer2.2.conv3.weights, layer3.0.downsample.1.batch_norm_[8].running_var, layer2.0.bn2.batch_norm_[8].bias, layer3.0.downsample.1.batch_norm_[8].bias, layer3.3.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.2.bn2.batch_norm_[8].running_var, layer3.3.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer4.1.conv3.weights, layer2.1.conv3.weights, layer2.2.bn2.batch_norm_[8].weight, layer3.0.bn1.indices_8, layer1.0.bn2.indices_8, layer1.1.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer4.1.bn1.batch_norm_[8].running_var, layer3.5.conv2.weights, layer3.0.bn3.batch_norm_[8].weight, layer4.0.bn2.batch_norm_[8].weight, layer2.2.conv2.weights, layer1.1.bn1.indices_8, layer3.4.bn2.batch_norm_[8].weight, layer4.2.conv1.filter, layer2.2.bn3.batch_norm_[8].weight, layer1.2.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.0.bn1.batch_norm_[8].weight, layer4.2.bn1.batch_norm_[8].running_var, layer3.4.bn1.batch_norm_[8].bias, layer2.3.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.3.conv1.weights, layer3.0.conv1.weights, layer2.0.downsample.0.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.1.bn1.batch_norm_[8].weight, layer3.5.conv3.filter, layer4.2.bn3.batch_norm_[8].running_var, bn1.batch_norm_[8].bias, layer2.1.bn2.batch_norm_[8].running_mean, layer3.5.conv2.filter, layer1.0.bn2.batch_norm_[8].running_var, bn1.batch_norm_[8].weight, layer3.0.bn2.batch_norm_[8].bias, layer1.1.conv1.filter, layer3.2.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.1.bn2.batch_norm_[8].bias, bn1.batch_norm_[8].running_mean, layer1.0.bn1.batch_norm_[8].weight, layer1.1.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.0.conv3.filter, layer2.0.bn2.indices_8, layer1.1.bn1.batch_norm_[8].running_mean, layer3.1.bn2.batch_norm_[8].weight, layer3.4.bn2.batch_norm_[8].running_mean, layer1.0.downsample.1.indices_8, layer1.2.conv2.weights, layer1.2.conv2.filter, layer3.5.bn2.batch_norm_[8].running_mean, layer3.5.bn3.batch_norm_[8].weight, layer3.2.bn2.batch_norm_[8].bias, layer1.0.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.2.bn2.indices_8, layer3.4.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.2.bn2.batch_norm_[8].running_mean, layer1.2.conv3.weights, layer3.1.conv3.filter, layer4.2.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.0.conv2.filter, layer4.1.bn1.indices_8, layer1.1.bn2.batch_norm_[8].bias, layer2.0.bn1.batch_norm_[8].running_var, layer3.0.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, bn1.batch_norm_[8].running_var, layer1.1.bn3.batch_norm_[8].running_var, layer3.4.conv1.weights, layer3.4.conv1.filter, layer2.3.conv1.filter, layer3.3.bn2.batch_norm_[8].bias, layer3.3.conv2.filter, layer1.0.conv2.weights, layer3.2.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.3.conv3.filter, layer3.5.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.5.bn3.batch_norm_[8].running_var, layer1.2.bn2.indices_8, layer4.0.bn3.batch_norm_[8].weight, layer2.0.bn3.batch_norm_[8].bias, layer2.3.bn2.batch_norm_[8].bias, layer3.0.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.4.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer1.0.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer1.2.bn3.batch_norm_[8].running_var, layer3.2.bn1.batch_norm_[8].running_mean, layer2.0.downsample.1.indices_8, layer3.3.bn3.indices_8, layer1.1.bn3.batch_norm_[8].running_mean, layer3.2.bn1.batch_norm_[8].bias, layer1.0.bn2.batch_norm_[8].running_mean, layer3.3.conv3.filter, layer3.0.bn2.indices_8, layer4.0.conv3.weights, layer4.1.bn2.batch_norm_[8].running_mean, layer2.1.bn2.batch_norm_[8].weight, layer4.0.downsample.1.batch_norm_[8].running_mean, layer1.0.downsample.1.batch_norm_[8].running_mean, layer3.4.bn3.batch_norm_[8].weight, layer4.1.conv3.filter, layer3.0.downsample.1.batch_norm_[8].weight, layer2.2.bn3.batch_norm_[8].running_var, layer1.2.conv3.filter, layer3.1.bn3.batch_norm_[8].bias, layer3.3.bn1.batch_norm_[8].running_var, layer1.0.downsample.0.filter, layer2.0.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.0.bn1.batch_norm_[8].bias, layer3.0.downsample.1.indices_8, layer3.2.bn1.indices_8, layer3.3.bn3.batch_norm_[8].running_var, layer2.0.bn2.batch_norm_[8].running_var, layer1.1.bn1.batch_norm_[8].weight, layer1.1.conv3.weights, layer2.1.conv1.weights, layer4.1.bn3.batch_norm_[8].weight, layer1.0.bn1.batch_norm_[8].running_var, layer3.1.bn2.batch_norm_[8].running_mean, layer4.0.conv1.weights, layer4.1.bn1.batch_norm_[8].weight, layer3.4.bn3.batch_norm_[8].running_mean, layer2.2.bn2.batch_norm_[8].bias, layer3.0.conv3.weights, layer2.1.conv2.filter, layer2.1.bn1.batch_norm_[8].running_var, layer2.1.conv3.filter, layer1.2.bn2.batch_norm_[8].running_mean, layer2.0.bn1.indices_8, layer4.0.bn2.batch_norm_[8].running_var, layer2.0.downsample.1.batch_norm_[8].running_mean, layer1.1.bn2.batch_norm_[8].running_mean, layer3.5.bn1.batch_norm_[8].running_var, layer4.0.bn1.batch_norm_[8].bias, layer3.2.conv1.weights, layer4.1.conv2.weights, layer2.0.conv1.filter, layer2.1.bn1.batch_norm_[8].running_mean, layer3.0.downsample.1.batch_norm_[8].running_mean, layer3.1.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.0.conv1.weights, layer2.1.bn3.batch_norm_[8].running_mean, layer2.0.bn3.batch_norm_[8].weight, layer3.0.bn1.batch_norm_[8].bias, layer1.0.bn1.batch_norm_[8].running_mean, layer3.2.bn2.batch_norm_[8].running_mean, layer3.4.bn1.batch_norm_[8].running_var, layer3.2.bn3.batch_norm_[8].bias, layer2.3.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.0.bn3.batch_norm_[8].running_var, layer4.1.conv2.filter, layer3.0.downsample.0.weights, layer3.5.bn1.batch_norm_[8].bias, layer3.0.conv1.filter, layer4.1.conv1.weights, layer1.1.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.2.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.3.bn3.batch_norm_[8].running_var, layer4.2.conv3.weights, layer2.3.bn1.batch_norm_[8].running_mean, layer2.1.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer1.1.bn3.batch_norm_[8].weight, layer4.0.conv2.weights, layer2.1.bn1.indices_8, layer2.2.bn1.batch_norm_[8].bias, layer2.0.bn2.batch_norm_[8].weight, layer1.2.conv1.weights, layer4.1.bn3.batch_norm_[8].bias, layer3.3.bn3.batch_norm_[8].bias, layer4.0.bn2.indices_8, layer4.0.downsample.1.batch_norm_[8].weight, layer2.3.bn1.batch_norm_[8].bias, layer2.3.bn2.batch_norm_[8].weight, layer3.2.bn1.batch_norm_[8].running_var, layer3.0.bn3.indices_8, layer4.0.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.0.bn1.batch_norm_[8].running_var, layer1.0.downsample.0.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer1.1.bn2.batch_norm_[8].weight, layer4.0.downsample.0.weights, layer1.1.bn2.batch_norm_[8].running_var, layer3.5.bn2.batch_norm_[8].bias, layer1.1.conv2.weights, layer3.4.conv3.filter, layer4.0.bn1.batch_norm_[8].running_mean, layer4.1.conv1.filter, layer3.2.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer4.1.bn3.batch_norm_[8].running_var, layer3.1.conv1.filter, layer3.5.bn2.batch_norm_[8].running_var, layer1.1.bn3.batch_norm_[8].bias, layer4.1.bn2.batch_norm_[8].bias, layer1.2.bn1.batch_norm_[8].bias, layer3.2.bn1.batch_norm_[8].weight, layer3.4.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer1.2.bn1.batch_norm_[8].running_var, layer3.3.conv1.filter, layer3.5.conv1.weights, layer3.3.bn2.batch_norm_[8].weight, layer3.0.downsample.0.filter, layer3.5.bn3.batch_norm_[8].running_mean, layer4.0.bn3.batch_norm_[8].bias, layer4.0.conv1.filter, layer4.2.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer1.0.bn3.batch_norm_[8].running_mean, layer3.2.conv3.filter, layer3.4.bn2.batch_norm_[8].running_var, layer1.2.bn3.batch_norm_[8].bias, layer1.1.bn1.batch_norm_[8].bias, layer3.2.bn3.batch_norm_[8].weight, layer3.2.conv2.weights, layer3.1.bn1.indices_8, layer2.0.bn3.batch_norm_[8].running_var, layer1.2.bn2.batch_norm_[8].weight, layer4.0.bn2.batch_norm_[8].bias, layer2.0.bn3.batch_norm_[8].running_mean, layer4.2.bn2.batch_norm_[8].bias, layer3.5.bn3.indices_8, layer4.2.bn1.indices_8, layer2.1.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.4.bn1.batch_norm_[8].weight, layer4.2.conv1.weights, layer2.1.bn1.batch_norm_[8].bias, layer1.1.conv2.filter, layer2.1.bn3.batch_norm_[8].weight, layer4.2.bn3.indices_8, layer4.1.bn3.batch_norm_[8].running_mean, layer3.0.conv2.filter, conv1.weights, layer4.2.bn3.batch_norm_[8].bias, layer4.2.conv2.weights, layer4.1.bn2.batch_norm_[8].weight, layer2.2.bn1.batch_norm_[8].running_var, layer4.2.bn1.batch_norm_[8].weight, layer4.1.bn3.indices_8, layer4.0.conv2.filter, layer3.1.bn1.batch_norm_[8].running_var, layer1.2.bn2.batch_norm_[8].running_var, layer3.2.bn3.indices_8, layer3.5.bn1.batch_norm_[8].weight, layer3.1.conv2.filter, layer4.1.bn2.batch_norm_[8].running_var, layer3.2.bn2.batch_norm_[8].running_var, layer3.0.downsample.0.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.3.bn2.batch_norm_[8].running_mean, layer2.2.bn1.indices_8, layer1.2.bn3.batch_norm_[8].running_mean, layer4.2.bn2.indices_8, layer4.0.conv3.filter, layer3.5.bn2.batch_norm_[8].weight, layer3.3.bn1.batch_norm_[8].bias, layer1.2.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer1.2.bn1.indices_8, layer3.5.conv1.filter, layer3.4.conv3.weights, layer3.0.bn2.batch_norm_[8].running_mean, layer1.2.bn1.batch_norm_[8].running_mean, layer3.0.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.3.conv1.weights, layer2.2.conv3.filter, layer1.2.bn3.batch_norm_[8].weight, layer2.0.conv3.filter, layer3.5.conv3.weights, layer3.0.bn2.batch_norm_[8].running_var, layer4.0.downsample.1.batch_norm_[8].bias, layer4.2.bn2.batch_norm_[8].running_var, layer1.0.downsample.1.batch_norm_[8].bias, layer1.2.bn2.batch_norm_[8].bias, layer2.1.bn2.indices_8, layer1.2.bn3.indices_8, layer2.2.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.0.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer4.2.bn1.batch_norm_[8].running_mean, layer3.1.conv1.weights, layer3.1.bn1.batch_norm_[8].weight, layer3.3.bn1.batch_norm_[8].running_mean, layer2.0.bn2.batch_norm_[8].running_mean, layer1.0.bn3.batch_norm_[8].weight, layer4.1.bn1.batch_norm_[8].running_mean, layer3.1.bn2.batch_norm_[8].running_var, layer2.2.conv1.weights, layer2.0.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.1.bn3.batch_norm_[8].running_mean, layer2.2.bn1.batch_norm_[8].weight, layer3.1.bn3.batch_norm_[8].weight, layer1.0.downsample.1.batch_norm_[8].weight, layer3.3.bn1.batch_norm_[8].weight, layer2.2.conv2.filter, layer3.0.bn3.batch_norm_[8].running_mean, layer4.0.bn2.batch_norm_[8].running_mean, layer3.3.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer1.0.conv3.filter, layer2.2.bn3.batch_norm_[8].running_mean, layer1.0.conv3.weights, layer3.1.bn1.batch_norm_[8].running_mean, layer4.0.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.1.bn3.batch_norm_[8].running_var, layer4.0.bn3.batch_norm_[8].running_mean, layer2.0.downsample.1.batch_norm_[8].running_var, layer3.1.bn2.indices_8, layer3.1.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer4.2.bn3.batch_norm_[8].running_mean, layer3.0.bn3.batch_norm_[8].bias, layer3.4.bn3.indices_8, layer3.2.conv3.weights, layer1.2.bn1.batch_norm_[8].weight, layer4.0.downsample.0.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer4.0.bn3.indices_8, layer1.0.bn1.indices_8, layer3.4.conv2.filter, layer3.3.bn2.indices_8, layer1.0.downsample.1.batch_norm_[8].running_var, layer3.0.bn2.batch_norm_[8].weight, layer3.5.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.5.bn1.batch_norm_[8].running_mean, layer4.1.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.1.bn3.indices_8, layer4.0.downsample.0.filter, layer1.1.bn1.batch_norm_[8].running_var, layer2.3.bn1.indices_8, layer4.2.conv3.filter, layer2.0.bn1.batch_norm_[8].running_mean, layer4.1.conv2.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.0.downsample.1.batch_norm_[8].weight, layer2.1.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer3.5.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.2.bn3.indices_8, layer1.2.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer2.3.bn3.indices_8, bn1.indices_8, layer2.3.bn3.batch_norm_[8].bias, layer2.3.bn3.batch_norm_[8].running_mean, layer3.0.bn1.batch_norm_[8].running_mean, layer4.2.bn2.batch_norm_[8].weight, layer1.0.conv1.weights, conv1.filter, layer3.1.bn3.batch_norm_[8].running_var, layer3.4.bn1.batch_norm_[8].running_mean, layer2.0.bn3.indices_8, layer2.1.conv1.filter, layer2.3.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer4.0.bn1.batch_norm_[8].weight, layer1.0.bn3.indices_8, layer2.0.downsample.0.filter, layer2.1.conv2.weights, layer3.0.bn1.batch_norm_[8].weight, layer3.3.bn2.batch_norm_[8].running_var, layer3.1.conv2.weights, layer4.2.bn3.batch_norm_[8].weight, layer2.0.conv2.weights, layer2.2.bn1.batch_norm_[8].running_mean, layer3.0.conv2.weights, layer3.2.bn3.batch_norm_[8].running_var, layer2.1.bn3.indices_8, layer2.2.bn3.batch_norm_[8].bias, layer2.3.conv2.filter, layer4.0.bn1.batch_norm_[8].running_var, layer2.3.bn1.batch_norm_[8].running_var, layer2.2.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer1.1.bn3.indices_8, layer3.3.bn3.batch_norm_[8].running_mean, layer2.2.bn2.indices_8, layer1.2.conv1.filter, layer1.0.bn2.batch_norm_[8].bias, layer2.0.conv3.weights, layer3.3.bn3.batch_norm_[8].weight, layer3.3.conv2.weights, layer4.0.bn1.indices_8, layer1.0.conv2.filter, layer2.3.bn3.batch_norm_[8].weight, layer3.5.bn2.indices_8, layer2.2.conv1.filter, layer3.5.bn3.batch_norm_[8].bias, layer3.1.conv3.basisexpansion.block_expansion('regular', 'regular').sampled_basis, layer4.2.conv1.basisexpansion.block_expansion('regular', 'regular').sampled_basis
Done (t=1.70s)
creating index...
loading annotations into memory...
index created!
Done (t=1.77s)
creating index...
index created!
2021-05-19 21:48:10,559 - INFO - Start running, host: neo@neo, work_dir: /home/neo/desktop/ReDet/work_dirs/ReDet_re50_refpn_1x_dota1
2021-05-19 21:48:10,559 - INFO - workflow: [('train', 1)], max: 12 epochs
Traceback (most recent call last):
File "./tools/train.py", line 95, in
main()
File "./tools/train.py", line 91, in main
logger=logger)
File "/home/neo/desktop/ReDet/mmdet/apis/train.py", line 59, in train_detector
_dist_train(model, dataset, cfg, validate=validate)
File "/home/neo/desktop/ReDet/mmdet/apis/train.py", line 171, in _dist_train
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/mmcv/runner/runner.py", line 358, in run
epoch_runner(data_loaders[i], **kwargs)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/mmcv/runner/runner.py", line 255, in train
self.model.train()
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1064, in train
module.train(mode)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1064, in train
module.train(mode)
File "/home/neo/desktop/ReDet/mmdet/models/backbones/re_resnet.py", line 727, in train
self._freeze_stages()
File "/home/neo/desktop/ReDet/mmdet/models/backbones/re_resnet.py", line 693, in _freeze_stages
m.eval()
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1080, in eval
return self.train(False)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1064, in train
module.train(mode)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1064, in train
module.train(mode)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/r2convolution.py", line 386, in train
_filter, _bias = self.expand_parameters()
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/r2convolution.py", line 303, in expand_parameters
_filter = self.basisexpansion(self.weights)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in call
result = self.forward(*input, **kwargs)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/basisexpansion_blocks.py", line 334, in forward
_filter = self._expand_block(weights, io_pair).reshape(out_indices[2], in_indices[2], self.S)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/basisexpansion_blocks.py", line 301, in _expand_block
_filter = block_expansion(coefficients)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in call
result = self.forward(*input, **kwargs)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/basisexpansion_singleblock.py", line 99, in forward
return torch.einsum('boi...,kb->koi...', self.sampled_basis, weights) #.transpose(1, 2).contiguous()
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/functional.py", line 201, in einsum
return torch._C._VariableFunctions.einsum(equation, operands)
RuntimeError: cublas runtime error : the GPU program failed to execute at /opt/conda/conda-bld/pytorch_1573049310284/work/aten/src/THC/THCBlas.cu:331
Traceback (most recent call last):
File "./tools/train.py", line 95, in
main()
File "./tools/train.py", line 91, in main
logger=logger)
File "/home/neo/desktop/ReDet/mmdet/apis/train.py", line 59, in train_detector
_dist_train(model, dataset, cfg, validate=validate)
File "/home/neo/desktop/ReDet/mmdet/apis/train.py", line 171, in _dist_train
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/mmcv/runner/runner.py", line 358, in run
epoch_runner(data_loaders[i], **kwargs)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/mmcv/runner/runner.py", line 255, in train
self.model.train()
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1064, in train
module.train(mode)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1064, in train
module.train(mode)
File "/home/neo/desktop/ReDet/mmdet/models/backbones/re_resnet.py", line 727, in train
self._freeze_stages()
File "/home/neo/desktop/ReDet/mmdet/models/backbones/re_resnet.py", line 693, in _freeze_stages
m.eval()
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1080, in eval
return self.train(False)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1064, in train
module.train(mode)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1064, in train
module.train(mode)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/r2convolution.py", line 386, in train
_filter, _bias = self.expand_parameters()
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/r2convolution.py", line 303, in expand_parameters
_filter = self.basisexpansion(self.weights)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in call
result = self.forward(*input, **kwargs)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/basisexpansion_blocks.py", line 334, in forward
_filter = self._expand_block(weights, io_pair).reshape(out_indices[2], in_indices[2], self.S)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/basisexpansion_blocks.py", line 301, in _expand_block
_filter = block_expansion(coefficients)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in call
result = self.forward(*input, **kwargs)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/e2cnn-0.1.7-py3.7.egg/e2cnn/nn/modules/r2_conv/basisexpansion_singleblock.py", line 99, in forward
return torch.einsum('boi...,kb->koi...', self.sampled_basis, weights) #.transpose(1, 2).contiguous()
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/functional.py", line 201, in einsum
return torch._C._VariableFunctions.einsum(equation, operands)
RuntimeError: cublas runtime error : the GPU program failed to execute at /opt/conda/conda-bld/pytorch_1573049310284/work/aten/src/THC/THCBlas.cu:331
Traceback (most recent call last):
File "/home/neo/anaconda3/envs/redet/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/distributed/launch.py", line 253, in
main()
File "/home/neo/anaconda3/envs/redet/lib/python3.7/site-packages/torch/distributed/launch.py", line 249, in main
cmd=cmd)
subprocess.CalledProcessError: Command '['/home/neo/anaconda3/envs/redet/bin/python', '-u', './tools/train.py', '--local_rank=1', 'configs/ReDet/ReDet_re50_refpn_1x_dota1.py', '--launcher', 'pytorch']' returned non-zero exit status 1.
`
Hi, csuhan! I run this algorithm with RTX3080*2,the env is as follows:
_libgcc_mutex 0.1 conda_forge https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
_openmp_mutex 4.5 1_gnu https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
addict 2.4.0 pypi_0 pypi
blas 1.0 mkl https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
bzip2 1.0.8 h7f98852_4 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
ca-certificates 2020.12.5 ha878542_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
certifi 2020.12.5 py37h89c1867_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
chardet 4.0.0 pypi_0 pypi
cudatoolkit 11.1.1 h6406543_8 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
cycler 0.10.0 pypi_0 pypi
cython 0.29.23 py37hcd2ae1e_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
e2cnn 0.1.7 pypi_0 pypi
ffmpeg 4.3 hf484d3e_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
freetype 2.10.4 h0708190_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
gmp 6.2.1 h58526e2_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
gnutls 3.6.13 h85f3911_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
idna 2.10 pypi_0 pypi
intel-openmp 2021.2.0 h06a4308_610 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
jpeg 9b h024ee3a_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
kiwisolver 1.3.1 pypi_0 pypi
lame 3.100 h7f98852_1001 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
lcms2 2.12 h3be6417_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
ld_impl_linux-64 2.35.1 hea4e1c9_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libffi 3.3 h58526e2_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libgcc-ng 9.3.0 h2828fa1_19 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libgomp 9.3.0 h2828fa1_19 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libiconv 1.16 h516909a_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libpng 1.6.37 h21135ba_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libstdcxx-ng 9.3.0 h6de172a_19 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libtiff 4.1.0 h2733197_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
libuv 1.41.0 h7f98852_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
lz4-c 1.9.3 h9c3ff4c_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
matplotlib 3.4.2 pypi_0 pypi
mkl 2021.2.0 h06a4308_296 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
mkl-service 2.3.0 py37h27cfd23_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
mkl_fft 1.3.0 py37h42c9631_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
mkl_random 1.2.1 py37ha9443f7_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
mmcv 0.2.13 pypi_0 pypi
mmdet 0.6.0+unknown dev_0
ncurses 6.2 h58526e2_4 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
nettle 3.6 he412f7d_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
ninja 1.10.2 h4bd325d_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
numpy 1.20.1 py37h93e21f0_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
numpy-base 1.20.1 py37h7d8b39e_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
olefile 0.46 pyh9f0ad1d_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
opencv-python 4.5.2.52 pypi_0 pypi
openh264 2.1.1 h780b84a_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
openssl 1.1.1k h7f98852_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
pillow 6.2.2 pypi_0 pypi
pip 21.1.1 pyhd8ed1ab_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
pycocotools 2.0.2 pypi_0 pypi
pyparsing 2.4.7 pypi_0 pypi
python 3.7.10 hffdb5ce_100_cpython https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
python-dateutil 2.8.1 pypi_0 pypi
python_abi 3.7 1_cp37m https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
pytorch 1.8.0 py3.7_cuda11.1_cudnn8.0.5_0
pyyaml 5.4.1 pypi_0 pypi
readline 8.1 h46c0cb4_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
requests 2.25.1 pypi_0 pypi
scipy 1.6.3 pypi_0 pypi
setuptools 49.6.0 py37h89c1867_3 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
shapely 1.7.1 pypi_0 pypi
six 1.16.0 pyh6c4a22f_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
sqlite 3.35.5 h74cdb3f_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
terminaltables 3.1.0 pypi_0 pypi
tk 8.6.10 h21135ba_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
torchvision 0.9.0 py37_cu111
tqdm 4.60.0 pypi_0 pypi
typing_extensions 3.7.4.3 py_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
urllib3 1.26.4 pypi_0 pypi
wheel 0.36.2 pyhd3deb0d_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
xz 5.2.5 h516909a_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
zlib 1.2.11 h516909a_1010 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
zstd 1.4.9 ha95c52a_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
**### The questions are:
1.I used the pretrain pth,but got
"unexpected key in source state_dict: backbone.conv1.weights, backbone.conv1.basisexpansion.block_expansion('irrep_0', 'regular').sampled_basis, backbone.bn1.indices_8, ",
how can I fix this?
2.When I input"python tools/train.py /home/neo/desktop/ReDet-master/configs/ReDet/ReDet_re50_refpn_1x_dota1.py", all worked correctly!
But when I input"CUDA_VISIBLE_DEVICES=1,2 ./tools/dist_train.sh configs/ReDet/ReDet_re50_refpn_1x_dota1.py 2", I got "RuntimeError: cublas runtime error : the GPU program failed".
Any suggestions would be appreciative.**