Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

Overview

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection, CVPR 2021

Abhinav Kumar, Garrick Brazil, Xiaoming Liu

[project], [supp], [slides], [1min_talk], demo, arxiv

This code is based on Kinematic-3D, such that the setup/organization is very similar. A few of the implementations, such as classical NMS, are based on Caffe.

References

Please cite the following paper if you find this repository useful:

@inproceedings{kumar2021groomed,
  title={{GrooMeD-NMS}: Grouped Mathematically Differentiable NMS for Monocular {$3$D} Object Detection},
  author={Kumar, Abhinav and Brazil, Garrick and Liu, Xiaoming},
  booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Setup

  • Requirements

    1. Python 3.6
    2. Pytorch 0.4.1
    3. Torchvision 0.2.1
    4. Cuda 8.0
    5. Ubuntu 18.04/Debian 8.9

    This is tested with NVIDIA 1080 Ti GPU. Other platforms have not been tested. Unless otherwise stated, the below scripts and instructions assume the working directory is the project root.

    Clone the repo first:

    git clone https://github.com/abhi1kumar/groomed_nms.git
  • Cuda & Python

    Install some basic packages:

    sudo apt-get install libopenblas-dev libboost-dev libboost-all-dev git
    sudo apt install gfortran
    
    # We need to compile with older version of gcc and g++
    sudo apt install gcc-5 g++-5
    sudo ln -f /usr/bin/gcc-5 /usr/local/cuda-8.0/bin/gcc
    sudo ln -s /usr/bin/g++-5 /usr/local/cuda-8.0/bin/g++

    Next, install conda and then install the required packages:

    wget https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
    bash Anaconda3-2020.02-Linux-x86_64.sh
    source ~/.bashrc
    conda list
    conda create --name py36 --file dependencies/conda.txt
    conda activate py36
  • KITTI Data

    Download the following images of the full KITTI 3D Object detection dataset:

    Then place a soft-link (or the actual data) in data/kitti:

     ln -s /path/to/kitti data/kitti

    The directory structure should look like this:

    ./groomed_nms
    |--- cuda_env
    |--- data
    |      |---kitti
    |            |---training
    |            |        |---calib
    |            |        |---image_2
    |            |        |---label_2
    |            |
    |            |---testing
    |                     |---calib
    |                     |---image_2
    |
    |--- dependencies
    |--- lib
    |--- models
    |--- scripts

    Then, use the following scripts to extract the data splits, which use soft-links to the above directory for efficient storage:

    python data/kitti_split1/setup_split.py
    python data/kitti_split2/setup_split.py

    Next, build the KITTI devkit eval:

     sh data/kitti_split1/devkit/cpp/build.sh
  • Classical NMS

    Lastly, build the classical NMS modules:

    cd lib/nms
    make
    cd ../..

Training

Training is carried out in two stages - a warmup and a full. Review the configurations in scripts/config for details.

chmod +x scripts_training.sh
./scripts_training.sh

If your training is accidentally stopped, you can resume at a checkpoint based on the snapshot with the restore flag. For example, to resume training starting at iteration 10k, use the following command:

source dependencies/cuda_8.0_env
CUDA_VISIBLE_DEVICES=0 python -u scripts/train_rpn_3d.py --config=groumd_nms --restore=10000

Testing

We provide logs/models/predictions for the main experiments on KITTI Val 1/Val 2/Test data splits available to download here.

Make an output folder in the project directory:

mkdir output

Place different models in the output folder as follows:

./groomed_nms
|--- output
|      |---groumd_nms
|      |
|      |---groumd_nms_split2
|      |
|      |---groumd_nms_full_train_2
|
| ...

To test, run the file as below:

chmod +x scripts_evaluation.sh
./scripts_evaluation.sh

Contact

For questions, feel free to post here or drop an email to this address- [email protected]

You might also like...
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

Code for
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

Code for
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

Categorical Depth Distribution Network for Monocular 3D Object Detection
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Progressive Coordinate Transforms for Monocular 3D Object Detection
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

Comments
  • Is there any difference between groom-nms and penalize highest-confidence proposal using gt directly?

    Is there any difference between groom-nms and penalize highest-confidence proposal using gt directly?

    Hi~thanks for your great work. However, I have some confusion in understanding the motivation of this algorithm. If we want to achieve the consistency of training and test, we can simply penalize the highest-confidence proposal in the training pipeline, which seems to achieve similar result.So, is there any difference between groom-nms and penalize highest-confidence proposal using gt directly?

    opened by kaixinbear 3
  • Problem in test

    Problem in test

    Hi, this is an exciting work.And i have a question when I try to test with the pre-train model. I can't find "Kinematic3D-Release/val1_kinematic/model_final".

    opened by chenH20000109 1
Releases(v0.1)
Owner
Abhinav Kumar
PhD Student, Computer Vision and Deep Learning, MSU
Abhinav Kumar
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 4, 2023
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

 同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

null 169 Jan 7, 2023
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 9, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022