Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

Overview

RSNA AI Deep Learning Lab 2021

Intro

Welcome Deep Learners!

This document provides all the information you need to participate in the RSNA AI Deep Learning Lab. This set of classes provides a hands-on opportunity to engage with deep learning tools, write basic algorithms, learn how to organize data to implement deep learning and improve your understanding of AI technology.

The classes will be held in the RSNA AI Deep Learning Lab classroom, which is located in the Lakeside Learning Center, Level 3. Here's the schedule of classes. CME credit is available for each session.

Requirements

All lessons are designed to run in Google Colab, which is a free web-based version of Jupyter hosted by Google. You will need a Google account (eg, gmail) to use Colab. If you don't already have a Google account, please create one in advance at the account sign-up page. You can delete the account when you complete the lessons if you wish.

We recommend that you use a computer with a recent vintage processor running the Chrome browser.

Lessons

Lesson : Pneumonia Detection Model Building (Beginner friendly)

Lesson : MedNIST Exam Classification with MONAI (Beginner friendly)

Lesson : DICOM Data Wrangling with Python (Beginner friendly)

Lesson : CT Body Part Classification (Beginner friendly): Notebook #1, Notebook #2

Lesson : YOLO: Bounding Box Segmentation & Classification: Practice Notebook, Complete Notebook

Lesson : Integrating Genomic and Imaging Data with TCGA-GBM

Lesson : Generative Adversarial Networks

Lesson : Object Detection & Segmentation (Beginner friendly)

Lesson : Working with Public Datasets: TCIA & IDC (Beginner friendly)

Lesson : NLP: Text Classification with RNNs & Transformers: Notebook #1, Notebook #2

Lesson : Multimodal Fusion for Pulmonary Embolism Detection Using CTs and Patient EMR

Lesson : Data Processing & Curation for Deep Learning (Beginner friendly)

Lesson : Basics of NLP in Radiology (Beginner friendly)

Class Schedule

Date / Time Class
Sun 10:30-11:30 am MedNIST Exam Classification with MONAI - Beginner friendly
Sun 1:00-2:00 pm DICOM Data Wrangling with Python - Beginner friendly
Sun 2:30-3:30 pm CT Body Part Classification - Beginner friendly
Mon 9:30-10:30 am YOLO: Bounding Box Segmentation & Classification
Mon 11:00 am-12:00 pm Integrating Genomic and Imaging Data with TCGA-GBM
Mon 1:30-2:30 pm Generative Adversarial Networks
Mon 3:00-4:00 pm Object Detection & Segmentation
Mon 4:30-5:30 pm Pneumonia Detection Model Building - Beginner friendly
Tue 11:00 am-12:00 pm Working with Public Datasets: TCIA & IDC - Beginner friendly
Tue 3:00-4:00 pm NLP: Text Classification with RNNs & Transformers
Wed 9:30-10:30 am Pneumonia Detection Model Building - Beginner friendly; Repeat
Wed 11:00 am-12:00 pm Working with Public Datasets: TCIA & IDC - Beginner friendly; Repeat
Wed 1:30-2:30 pm Multimodal Fusion for Pulmonary Embolism Detection Using CTs and Patient EMR
Wed 4:30-5:30 pm Data Processing & Curation for Deep Learning - Beginner friendly
Thu 11:00 am-12:00 pm Basics of NLP in Radiology - Beginner friendly
Comments
  • IDC/TCIA tutorial materials

    IDC/TCIA tutorial materials

    @wfwiggins this notebook is not complete, I am submitting a draft PR to know that we are working on it, but I don't think it should be merged yet. Hope this is ok.

    opened by fedorov 2
  • Corrected the

    Corrected the "random_state" issue in yolo notebook

    Hello Dr. Wiggins. I removed that "random_state" argument in StratifiedGroupKFold command as it was causing errors in the notebook. It should run fine now.

    opened by PouriaRouzrokh 1
  • YOLO - Final PR

    YOLO - Final PR

    Dear Dr. Wiggins,

    This PR includes the final version of the notebooks and slides for the workshop.

    Sorry for the multiple PRs during these weeks! Pouria

    opened by PouriaRouzrokh 0
  • Commit nov15

    Commit nov15

    Hi Dr. Wiggins,

    We recently ran a pilot for our workshop in our own lab, and based on that, I modified our notebook and slideset a little. Most of the changes aim to make the workshop more time-efficient. I would be grateful if you can merge this PR.

    BTW, I may take your time a couple of more times before RSNA with minor edits to the notebook or slides. I am still seeking feedback from a few colleagues on how I can improve the workshop.

    Thank you, Pouria

    opened by PouriaRouzrokh 0
  • Created using Colaboratory

    Created using Colaboratory

    This is Kirti Magudia's session "Data Processing & Curation for Deep Learning". Also adding a zip file for the sample data (link will need to be updated in colab notebook). Sample_DICOM.zip

    opened by kirmag 0
  • Tensoerflow 1 deprecated in

    Tensoerflow 1 deprecated in "RSNA 2021: TCIA and IDC"

    WARNING: Tensorflow 1 is deprecated, and support will be removed on August 1, 2022. After that, %tensorflow_version 1.x will throw an error.

    Your notebook should be updated to use Tensorflow 2. See the guide at https://www.tensorflow.org/guide/migrate#migrate-from-tensorflow-1x-to-tensorflow-2.

    opened by tamarkashti 0
Owner
RSNA
RSNA
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

null 17 Dec 19, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 3, 2021
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

null 33 Dec 18, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 2, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 3, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 1, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

null 2 Jan 26, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 1, 2023
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022