A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Overview

Yolo-Powered-Detector

A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries. The yolo architecture is being built and formatted directly from the detailed and useful blog by Ayoosh Kathuria and his associated github repository. Once mastering this tutorial on object detection I will be adding commits to personalize the model and integrate it into my own application.

PURPOSE:

API to train and apply the yolo-architecture for object detection and classification

REQUIREMENTS:

  • Yolo architecture is downloaded and can be trained on a dataset by user
  • The number architecture and number of outputs is customizable by the user
  • The deeper convolutional layers are unfrozen for a period of time during training for tuning
  • User can load a model and continue training or move directly to inference
  • Saved trained model information is stored in a specific folder with a useful naming convention
  • There are time-limited prompts that allow the user to direct processes as needed
  • Training performance can be tested before moving onward to inference if desired
  • Predictions are made using paralleled batches and are saved in a results dictionary

HOW TO USE:

  • Pending Project Completion

Table Of Contents

darknet

cfg

Credits

This repository is being built off of Ayoosh Kathuria's shared github repository for implementing the yolo architecture https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch. This repository is inspired by ideas that I learned from Stanford's online lecture series CS231n Convolutional Neural Networks for Visual Recognition.

Dependencies

Please see the requirements.txt file or the environment env-detector-pytorch.yaml file for minimal dependencies required to run the repository code.

Install

To install these dependencies with pip, you can issue pip3 install -r requirements.txt To install these dependencies with conda, use conda env create --file env-detector-pytorch.yaml

You might also like...
Real-time multi-object tracker using YOLO v5 and deep sort
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algorithm which tracks the objects. It can track any object that your Yolov5 model was trained to detect.

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Object detection using yolo-tiny model and opencv used as backend
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

Real Time Object Detection and Classification using Yolo Algorithm.
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

Autonomous Perception: 3D Object Detection with Complex-YOLO
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Owner
Luke Wilson
Hi there, I am a P.Eng. with a passion for creating integrated AI-powered software. Projects in this repository mainly use python for computer vision problems.
Luke Wilson
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

null 26 Dec 13, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 9, 2023
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

null 39 Dec 17, 2022
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

null 1 Aug 4, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch >= 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy  N. Monday 3 Feb 15, 2022