SPEAR: Semi suPErvised dAta progRamming

Overview

PyPI docs license website GitHub repo size



Semi-Supervised Data Programming for Data Efficient Machine Learning

SPEAR is a library for data programming with semi-supervision. The package implements several recent data programming approaches including facility to programmatically label and build training data.

Pipeline

  • Design Labeling functions(LFs)
  • generate pickle file containing labels by passing raw data to LFs
  • Use one of the Label Aggregators(LA) to get final labels



SPEAR provides functionality such as

  • development of LFs/rules/heuristics for quick labeling
  • compare against several data programming approaches
  • compare against semi-supervised data programming approaches
  • use subset selection to make best use of the annotation efforts

Labelling Functions (LFs)

  • discrete LFs - Users can define LFs that return discrete labels
  • continuous LFs - return continuous scores/confidence to the labels assigned

Approaches Implemented

You can read this paper to know about below approaches

  • Only-L
  • Learning to Reweight
  • Posterior Regularization
  • Imply Loss
  • CAGE
  • Joint Learning

Data folder for SMS can be found here. This folder needs to be placed in the same directory as notebooks folder is in, to run the notebooks or examples.

Installation

Method 1

To install latest version of SPEAR package using PyPI:

pip install decile-spear

Method 2

SPEAR requires Python 3.6 or later. First install submodlib. Then install SPEAR:

git clone https://github.com/decile-team/spear.git
cd spear
pip install -r requirements/requirements.txt

Citation

@misc{abhishek2021spear,
      title={SPEAR : Semi-supervised Data Programming in Python}, 
      author={Guttu Sai Abhishek and Harshad Ingole and Parth Laturia and Vineeth Dorna and Ayush Maheshwari and Ganesh Ramakrishnan and Rishabh Iyer},
      year={2021},
      eprint={2108.00373},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Quick Links

Acknowledgment

SPEAR takes inspiration, builds upon, and uses pieces of code from several open source codebases. These include Snorkel, Snuba & Imply Loss. Also, SPEAR uses SUBMODLIB for subset selection, which is provided by DECILE too.

Team

SPEAR is created and maintained by Ayush, Abhishek, Vineeth, Harshad, Parth, Pankaj, Rishabh Iyer, and Ganesh Ramakrishnan. We look forward to have SPEAR more community driven. Please use it and contribute to it for your research, and feel free to use it for your commercial projects. We will add the major contributors here.

Publications

[1] Maheshwari, Ayush, et al. Data Programming using Semi-Supervision and Subset Selection, In Findings of ACL (Long Paper) 2021.

[2] Chatterjee, Oishik, Ganesh Ramakrishnan, and Sunita Sarawagi. Data Programming using Continuous and Quality-Guided Labeling Functions, In AAAI 2020.

[3] Sahay, Atul, et al. Rule augmented unsupervised constituency parsing, In Findings of ACL (Short Paper) 2021.

You might also like...
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

 From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement.

Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Comments
  • Updated condition for Gold Label check and passing parameter name passing

    Updated condition for Gold Label check and passing parameter name passing

    1. Current Version of Spear fails when we are trying to do LF analysis without passing Gold Labels and their values is passed as None and is causing the following error as it is not checked

    Y = np.array([self.mapping[v] for v in Y]) TypeError: 'NoneType' object is not iterable

    1. Also their is a function call of confusion_matrix in lf_summary method, which requires the parameter name to execute properly else it fails with following error of argument passing

    confusion_matrix(Y, self.L[:, i], labels)[1:, 1:] for i in range(m) TypeError: confusion_matrix() takes 2 positional arguments but 3 were given

    The current code change fixes these two issues.

    opened by kasuba-badri-vishal 1
  • sms_jl.ipynb ISSUE with

    sms_jl.ipynb ISSUE with "Some Labelling Functions" code snippet

    I have changed the directory of previously glove_w2v.txt and then ran on my local pc and installed all reqd libraries but it shows an invalid literal for int() with base 10: 'import'

    I think its an issue with gensim but can;t seem to resolve it

    i'm attaching a picture down below :

    https://cdn.discordapp.com/attachments/754057588714373325/989172192078098442/unknown.png

    opened by Brshank 1
Releases(v1.0.0)
Owner
decile-team
DECILE: Data EffiCient machIne LEarning
decile-team
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

null 5 Dec 10, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 2, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

null 11 Nov 23, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

null 43 Nov 19, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022