YOLOX-Backbone
yolox-backbone
is a deep-learning library and is a collection of YOLOX backbone models.
Install
pip install yolox-backbone
Load a Pretrained Model
Pretrained models can be loaded using yolox_backbone.create_model.
import yolox_backbone
m = yolox_backbone.create_model('yolox-s', pretrained=True)
m.eval()
List Supported Models
import yolox_backbone
from pprint import pprint
model_names = yolox_backbone.list_models()
pprint(model_names)
>>> ['yolox-s',
'yolox-m',
'yolox-l',
'yolox-x',
'yolox-nano',
'yolox-tiny',
'yolox-darknet53']
Select specific feature levels
There is one creation argument impacting the output features.
out_features
selects which FPN features to output
Example
import yolox_backbone
import torch
from pprint import pprint
pprint(yolox_backbone.list_models())
model_names = yolox_backbone.list_models()
for model_name in model_names:
print("model_name: ", model_name)
model = yolox_backbone.create_model(model_name=model_name,
pretrained=True,
out_features=["P3", "P4", "P5"]
)
input_tensor = torch.randn((1, 3, 640, 640))
fpn_output_tensors = model(input_tensor)
p3 = fpn_output_tensors["P3"]
p4 = fpn_output_tensors["P4"]
p5 = fpn_output_tensors["P5"]
print("input_tensor.shape: ", input_tensor.shape)
print("p3.shape: ", p3.shape)
print("p4.shape: ", p4.shape)
print("p5.shape: ", p5.shape)
print("-" * 50)
Output:
['yolox-s', 'yolox-m', 'yolox-l', 'yolox-x', 'yolox-nano', 'yolox-tiny', 'yolox-darknet53']
model_name: yolox-s
input_tensor.shape: torch.Size([1, 3, 640, 640])
p3.shape: torch.Size([1, 128, 80, 80])
p4.shape: torch.Size([1, 256, 40, 40])
p5.shape: torch.Size([1, 512, 20, 20])
--------------------------------------------------
model_name: yolox-m
input_tensor.shape: torch.Size([1, 3, 640, 640])
p3.shape: torch.Size([1, 192, 80, 80])
p4.shape: torch.Size([1, 384, 40, 40])
p5.shape: torch.Size([1, 768, 20, 20])
--------------------------------------------------
model_name: yolox-l
input_tensor.shape: torch.Size([1, 3, 640, 640])
p3.shape: torch.Size([1, 256, 80, 80])
p4.shape: torch.Size([1, 512, 40, 40])
p5.shape: torch.Size([1, 1024, 20, 20])
--------------------------------------------------
model_name: yolox-x
input_tensor.shape: torch.Size([1, 3, 640, 640])
p3.shape: torch.Size([1, 320, 80, 80])
p4.shape: torch.Size([1, 640, 40, 40])
p5.shape: torch.Size([1, 1280, 20, 20])
--------------------------------------------------
model_name: yolox-nano
input_tensor.shape: torch.Size([1, 3, 640, 640])
p3.shape: torch.Size([1, 64, 80, 80])
p4.shape: torch.Size([1, 128, 40, 40])
p5.shape: torch.Size([1, 256, 20, 20])
--------------------------------------------------
model_name: yolox-tiny
input_tensor.shape: torch.Size([1, 3, 640, 640])
p3.shape: torch.Size([1, 96, 80, 80])
p4.shape: torch.Size([1, 192, 40, 40])
p5.shape: torch.Size([1, 384, 20, 20])
--------------------------------------------------
model_name: yolox-darknet53
input_tensor.shape: torch.Size([1, 3, 640, 640])
p3.shape: torch.Size([1, 128, 80, 80])
p4.shape: torch.Size([1, 256, 40, 40])
p5.shape: torch.Size([1, 512, 20, 20])
--------------------------------------------------