Direct Molecular Conformation Generation
This repository contains the code for Direct Molecular Conformation Generation (DMCG).
Dataset
Download rdkit_folder.tar.gz from this url.
tar -xvf rdkit_folder.tar.gz
Requirements and Installation
- PyTorch
- Torch-Geometric
You can build a Docker image with the Dockerfile. To install DMCG and develop it locally
pip install -e .
Train
The first time you run this code, you should specify the data path with --base-path
, and the code will binarize data into binarized format.
bash run_training.sh --dropout 0.1 --use-bn --no-3drot \
--aux-loss 0.2 --num-layers 6 --lr 2e-4 --batch-size 128 --vae-beta-min 0.0001 --vae-beta-max 0.03 \
--reuse-prior --node-attn --data-split confgf --pred-pos-residual \
--dataset-name qm9 --remove-hs --shared-output --base-path $yourdatapath
Test
python evaluate.py --dropout 0.1 --use-bn --lr-warmup --use-adamw --train-subset \
--num-layers 6 --eval-from $yourcktpath --workers 20 --batch-size 128 \
--reuse-prior --node-attn --data-split confgf --dataset-name qm9 --remove-hs \
--shared-output --pred-pos-residual --sample-beta 1.2