Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?
Repository Structure:
DSAN
|└───amazon
| └── dataset (Amazon dataset)
| ├── result
| ├── amazon_utils.py
| ├── dsan.py
| └── flip_gradient.py
| └── logger.py
|────imageclef
| └── dataset (ImageCLEF dataset)
| ├── logs
| ├── utils.py
| ├── dsan.py
| └── flip_gradient.py
Instructions on running the code: ##1. Run the following command
# for Amazon
cd amazon
python dsan.py --src $source_domain_name --tgt $target_domain_name
# for ImageCLEF
cd imageclef
python dsan.py --src $source_domain_name --tgt $target_domain_name
##2. Compute environment for our experiments:
CPU: Intel 7700k
GPU: GeForce RTX2070
32 GB Memory
##3. Table of the experiment result for Amazon:
Model | B→D | B→E | B→K | D→B | D→E | D→K | E→D | E→B | E→K | K→B | K→D | K→E |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DIRT-T | 78.6 | 76.1 | 75.5 | 76.8 | 75.2 | 79.1 | 69.6 | 71.0 | 84.2 | 69.2 | 73.3 | 79.5 |
MDD | 77.1 | 74.4 | 77.0 | 74.7 | 74.1 | 76.3 | 72.4 | 70.2 | 83.3 | 69.3 | 73.2 | 82.8 |
DSAN | 82.7 | 80.8 | 82.6 | 79.5 | 81.4 | 85.3 | 76.7 | 75.1 | 88.0 | 73.8 | 77.3 | 85.0 |