Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG)
This is the unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"
reference: https://arxiv.org/pdf/2108.02927.pdf
Prerequisites
- PyTorch
- PyTorch Lightning
- timm
- sklearn
- pandas
- jpeg4py
- albumentations
- python3
- CUDA
Data
You can get the GLDv2 dataset from here.
If you just want the GLDv2-clean dataset, check this kaggle competition dataset.
Place your data like the structure below
data
├── train_clean.csv
└── train
└── ###
└── ###
└── ###
└── ###.jpg
Citations
@misc{yang2021dolg,
title={DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features},
author={Min Yang and Dongliang He and Miao Fan and Baorong Shi and Xuetong Xue and Fu Li and Errui Ding and Jizhou Huang},
year={2021},
eprint={2108.02927},
archivePrefix={arXiv},
primaryClass={cs.CV}
}