Seaborn is one of the go-to tools for statistical data visualization in python. It has been actively developed since 2012 and in July 2018, the author released version 0.9. This version of Seaborn has several new plotting features, API changes and documentation updates which combine to enhance an already great library. This article will walk through a few of the highlights and show how to use the new scatter and line plot functions for quickly creating very useful visualizations of data.

Overview

Last Commit Created Last Commit Stars Badge Forks Badge Size Pull Requests Badge Issues Badge Language MIT License

binder colab

12_Python_Seaborn_Module

Introduction 👋

From the website, “Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informational statistical graphs.”

Seaborn excels at doing Exploratory Data Analysis (EDA) which is an important early step in any data analysis project. Seaborn uses a “dataset-oriented” API that offers a consistent way to create multiple visualizations that show the relationships between many variables. In practice, Seaborn works best when using Pandas dataframes and when the data is in tidy format.

What’s New?

In my opinion the most interesting new plot is the relationship plot or relplot() function which allows you to plot with the new scatterplot() and lineplot() on data-aware grids. Prior to this release, scatter plots were shoe-horned into seaborn by using the base matplotlib function plt.scatter and were not particularly powerful. The lineplot() is replacing the tsplot() function which was not as useful as it could be. These two changes open up a lot of new possibilities for the types of EDA that are very common in Data Science/Analysis projects.

The other useful update is a brand new introduction document which very clearly lays out what Seaborn is and how to use it. In the past, one of the biggest challenges with Seaborn was figuring out how to have the “Seaborn mindset.” This introduction goes a long way towards smoothing the transition.


Table of contents 📋

No. Name
01 Seaborn_Loading_Dataset
02 Seaborn_Controlling_Aesthetics
03 Seaborn_Matplotlib_vs_Seaborn
04 Seaborn_Color_Palettes
05 Seaborn_LM Plot_&_Reg_Plot
06 Seaborn_Scatter_Plot_&_Joint_Plot
07 Seaborn_Additional_Regression_Plots
08 Seaborn_Categorical_Data_Plot
09 Seaborn_Dist_Plot
10 Seaborn_Strip_Plot
11 Seaborn_Box_Plot
12 Seaborn_Violin_Plot
13 Seaborn_Bar_Plot_and_Count_Plot
14 Seaborn_TimeSeries_and_LetterValue_Plot
15 Seaborn_Factor_Plot
16 Seaborn_PairGrid_Plot
17 Seaborn_FacetGrid_Plot
18 Seaborn_Heat_Map
19 Seaborn_Cluster_Map
datasets
11 Python Seaborn Statistical Data Visualization.pdf

These are online read-only versions. However you can Run ▶ all the codes online by clicking here ➞ binder


Install Seaborn Module:

Open your Anaconda Prompt propmt and type and run the following command (individually):

  •   pip install seaborn  
    

Once Installed now we can import it inside our python code.


Frequently asked questions

How can I thank you for writing and sharing this tutorial? 🌷

You can Star Badge and Fork Badge Starring and Forking is free for you, but it tells me and other people that it was helpful and you like this tutorial.

Go here if you aren't here already and click ➞ ✰ Star and ⵖ Fork button in the top right corner. You will be asked to create a GitHub account if you don't already have one.


How can I read this tutorial without an Internet connection? GIF

  1. Go here and click the big green ➞ Code button in the top right of the page, then click ➞ Download ZIP.

    Download ZIP

  2. Extract the ZIP and open it. Unfortunately I don't have any more specific instructions because how exactly this is done depends on which operating system you run.

  3. Launch ipython notebook from the folder which contains the notebooks. Open each one of them

    Kernel > Restart & Clear Output

This will clear all the outputs and now you can understand each statement and learn interactively.

If you have git and you know how to use it, you can also clone the repository instead of downloading a zip and extracting it. An advantage with doing it this way is that you don't need to download the whole tutorial again to get the latest version of it, all you need to do is to pull with git and run ipython notebook again.


Authors ✍️

I'm Dr. Milaan Parmar and I have written this tutorial. If you think you can add/correct/edit and enhance this tutorial you are most welcome 🙏

See github's contributors page for details.

If you have trouble with this tutorial please tell me about it by Create an issue on GitHub. and I'll make this tutorial better. This is probably the best choice if you had trouble following the tutorial, and something in it should be explained better. You will be asked to create a GitHub account if you don't already have one.

If you like this tutorial, please give it a star.


Licence 📜

You may use this tutorial freely at your own risk. See LICENSE.

You might also like...
Declarative statistical visualization library for Python
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

 Show Data: Show your dataset in web browser!
Show Data: Show your dataset in web browser!

Show Data is to generate html tables for large scale image dataset, especially for the dataset in remote server. It provides some useful commond line tools and fully customizeble API reference to generate html table different tasks.

Function Plotter: a simple application with GUI to plot mathematical functions
Function Plotter: a simple application with GUI to plot mathematical functions

Function-Plotter Function Plotter is a simple application with GUI to plot mathe

Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time
Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

A Python Binder that merge 2 files with any extension by creating a new python file and compiling it to exe which runs both payloads.
A Python Binder that merge 2 files with any extension by creating a new python file and compiling it to exe which runs both payloads.

Update ! ANONFILE MIGHT NOT WORK ! About A Python Binder that merge 2 files with any extension by creating a new python file and compiling it to exe w

Create matplotlib visualizations from the command-line
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Owner
Milaan Parmar / Милан пармар / _米兰 帕尔马
💼👨‍🏫 Researcher • Python | MATLAB | R • Build🤯 → Test🤞 → Debug✔️ “Change Is the Only Constant in Life" ➶
Milaan Parmar /  Милан пармар / _米兰 帕尔马
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

null 9 Jul 22, 2022
This is a Cross-Platform Plot Manager for Chia Plotting that is simple, easy-to-use, and reliable.

Swar's Chia Plot Manager A plot manager for Chia plotting: https://www.chia.net/ Development Version: v0.0.1 This is a cross-platform Chia Plot Manage

Swar Patel 1.3k Dec 13, 2022
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

null 2 Nov 21, 2021
An open-source plotting library for statistical data.

Lets-Plot Lets-Plot is an open-source plotting library for statistical data. It is implemented using the Kotlin programming language. The design of Le

JetBrains 820 Jan 6, 2023
An open-source plotting library for statistical data.

Lets-Plot Lets-Plot is an open-source plotting library for statistical data. It is implemented using the Kotlin programming language. The design of Le

JetBrains 509 Feb 17, 2021
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 1.6k Jan 8, 2023
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 692 Feb 18, 2021
Streamlit component for Let's-Plot visualization library

streamlit-letsplot This is a work-in-progress, providing a convenience function to plot charts from the Lets-Plot visualization library. Example usage

Randy Zwitch 9 Nov 3, 2022
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 5, 2023
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 6.4k Feb 13, 2021