Simultaneous Demand Prediction and Planning
Dependencies
Python packages: Pytorch
, scikit-learn
, Pandas
, Numpy
, PyYAML
Data
POI: data/poi
Road network: data/roadnet
Transportation: data/transportation
Station profile: data/station_list
Charging records: data/station
Station profile and charging records can be collected in Star Charge APP.
Experiments
- Evaluations of charging demand prediction
python model/run.py --source SOURCE_CITY --target TARGET_CITY --model MODEL_NAME
- Evaluations based on real plans
- Even, CG, Real, TIO:
python real_world.py
- Park:
python real_world_parking.py
- Pop:
python real_world_population.py
- Even, CG, Real, TIO:
- Evaluations with varied budgets
python evaluation_varied_budget.py
- Evaluations with optimal solution
python optimal_comparison_BF_tio.py