Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

Related tags

Deep Learning DSA2F
Overview

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

This repo is the official implementation of "DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion"

by Peng Sun, Wenhu Zhang, Huanyu Wang, Songyuan Li, and Xi Li.

Prerequisites

  • Ubuntu 18
  • PyTorch 1.7.0
  • CUDA 10.1
  • Cudnn 7.5.1
  • Python 3.7
  • Numpy 1.17.3

Training

Please see launch_train.sh and launch_pretrain.sh for imagenet pretraining and sod training, respectively.

Testing

Please see launch_test.sh for testing on the sod benchmarks.

Main Results

Dataset Er Sλmean Fβmean M
DUT-RGBD 0.950 0.921 0.926 0.030
NJUD 0.923 0.903 0.901 0.039
NLPR 0.950 0.918 0.897 0.024
SSD 0.904 0.876 0.852 0.045
STEREO 0.933 0.904 0.898 0.036
LFSD 0.923 0.882 0.882 0.054
RGBD135 0.962 0.920 0.896 0.021

Saliency maps and Evaluation

All of the saliency maps mentioned in the paper are available on GoogleDrive or BaiduYun(code:juc2).

You can use the toolbox provided by jiwei0921 for evaluation.

Additionally, we also provide the saliency maps of the STERE-1000 and SIP dataset on BaiduYun(code:qxfw) for easy comparison.

Dataset Er Sλmean Fβmean M
STERE-1000 0.928 0.897 0.895 0.038
SIP 0.908 0.861 0.868 0.057

Citation

@inproceedings{Sun2021DeepRS,
  title={Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion},
  author={P. Sun and Wenhu Zhang and Huanyu Wang and Songyuan Li and Xi Li},
  journal={IEEE Conf. Comput. Vis. Pattern Recog.},
  year={2021}
}

License

The code is released under MIT License (see LICENSE file for details).

You might also like...
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

DSAC* for Visual Camera Re-Localization (RGB or RGB-D)
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

RGB-D Local Implicit Function for Depth Completion of Transparent Objects
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

PN-Net a neural field-based framework for depth estimation from single-view RGB images.
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

Comments
  • Argument Values for Pretraining Script

    Argument Values for Pretraining Script

    I am trying to replicate the experiment by running the pretraining script. This is what I have done till now:

    • Downloaded the ILSVRC 2017 dataset from ImageNet website and extracted it.
    • Run the pretraining script by changing the dataset path from the file and setting -n 2 -g 2.

    This setting is giving me a timeout error when initializing the Pytorch distributed process group. Can you provide which parameters you used while training?

    Thank you

    Error:

    Traceback (most recent call last):
      File "imagenet_pretrain.py", line 424, in <module>
        main()
      File "imagenet_pretrain.py", line 421, in main
        mp.spawn(main_worker, nprocs=args.gpus, args=(args,))
      File "/home/shubhanshu/.local/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 240, in spawn
        return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
      File "/home/shubhanshu/.local/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 198, in start_processes
        while not context.join():
      File "/home/shubhanshu/.local/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 160, in join
        raise ProcessRaisedException(msg, error_index, failed_process.pid)
    torch.multiprocessing.spawn.ProcessRaisedException:
    
    -- Process 1 terminated with the following error:
    Traceback (most recent call last):
      File "/home/shubhanshu/.local/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap
        fn(i, *args)
      File "/home/shubhanshu/DSA2F/imagenet_pretrain.py", line 256, in main_worker
        rank=args.rank)
      File "/home/shubhanshu/.local/lib/python3.7/site-packages/torch/distributed/distributed_c10d.py", line 627, in init_process_group
        _store_based_barrier(rank, store, timeout)
      File "/home/shubhanshu/.local/lib/python3.7/site-packages/torch/distributed/distributed_c10d.py", line 258, in _store_based_barrier
        rank, store_key, world_size, worker_count, timeout
    RuntimeError: Timed out initializing process group in store based barrier on rank: 1, for key: store_based_barrier_key:1 (world_size=4, worker_count=2, timeout=0:30:00)
    
    opened by shubhanshu02 0
Owner
如今我已剑指天涯
如今我已剑指天涯
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 4, 2021
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

null 695 Jan 5, 2023
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 6, 2023
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 3, 2023