Riemannian Convex Potential Maps

Related tags

Deep Learning rcpm
Overview

Riemannian Convex Potential Maps

This repository is by Brandon Amos, Samuel Cohen and Yaron Lipman and contains the JAX source code to reproduce the experiments in our ICML 2021 paper on Riemannian Convex Potential Maps.

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited by representational and computational tradeoffs. We propose and study a class of flows that uses convex potentials from Riemannian optimal transport. These are universal and can model distributions on any compact Riemannian manifold without requiring domain knowledge of the manifold to be integrated into the architecture. We demonstrate that these flows can model standard distributions on spheres, and tori, on synthetic and geological data.

Reproducing our experiments

config.yaml contains the basic config for setting up our experiments. We currently use hydra 1.0.3. By default it contains the options to reproduce the multimodal sphere flow:

This can be run with:

$ ./main.py
workspace: /private/home/bda/repos/rcpm/exp_local/2021.06.21/053411
Iter 1000 | Loss -10.906 | KL 0.017 | ESS 96.74% | 9.54e-02s/it
Iter 2000 | Loss -10.908 | KL 0.013 | ESS 97.43% | 1.90e-02s/it
Iter 3000 | Loss -10.911 | KL 0.012 | ESS 97.71% | 1.75e-02s/it
Iter 4000 | Loss -10.912 | KL 0.010 | ESS 98.02% | 1.63e-02s/it
Iter 5000 | Loss -10.912 | KL 0.009 | ESS 98.19% | 1.46e-02s/it
...
Iter 30000 | Loss -10.915 | KL 0.006 | ESS 98.75% | 1.78e-02s/it

This will create a work directory in exp_local with the models and debugging information. You can use plot-components.py to further analyze the components of the learned flow, and plot-demo.py to produce the grid visualization from Figure 2 of our paper.

Other JAX sphere flow library

katalinic/sdflows provides a great JAX re-implementation of Normalizing Flows on Tori and Spheres.

Citations

If you find this repository helpful for your publications, please consider citing our paper:

@inproceedings{cohen2021riemannian,
  title={{Riemannian Convex Potential Maps}},
  author={Cohen*, Samuel and Amos*, Brandon and Lipman, Yaron},
  booktitle={ICML},
  year={2021},
}

Licensing

This repository is licensed under the CC BY-NC 4.0 License.

You might also like...
Image morphing without reference points by applying warp maps and optimizing over them.
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

PyTorch implementations of the paper:
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Spatial Action Maps for Mobile Manipulation (RSS 2020)
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Comments
  • Lie group application

    Lie group application

    Thanks for your great work on applying optimal transport to Manifold Normalizing Flow. I wonder, can we apply this general framework to any manifold of the Lie group? especially for SO(2) or SO(3) manifolds. Both have well-defined rotation geodesics and closed-form exponential maps.

    opened by huyphan168 0
Owner
Facebook Research
Facebook Research
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022