Neural Surface Maps

Overview

Neural Surface Maps

Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra

[Paper] [Project Page]

How-To

Replicating the results is possible following these steps:

  1. Parametrize the surface
  2. Prepare surface sample
  3. Overfit the surface
  4. Neural parametrization of the surface
  5. Optimize surface-to-surface map
  6. Optimize a map between a collection

1. Surface Parametrization

This is a preprocessing step. You can use SLIM[1] from this repo to fulfill this step.

2. Sample preparation

Given a parametrized surface (prev. step), we need to convert it into a sample. First of all, we need to over sample the surface with Meshlab. You can use the midpoint subdivision filter.

Once the super-sampled surface is ready then you can convert it into a sample:

python -m preprocessing.convert_sample surface_slim.obj surface_slim_oversampled.obj output_sample.pth

The file output_sample.pth is the sample ready to be over-fitted.

3. Overfit surface

A surface representation is generated with:

python -m training_surface_map dataset.sample_path=output_sample.pth

This will save a surface map inside outputs/neural_maps folder. The folder name follows this patterns: overfit_[timestamp]. Inside that folder, the map is saved under the sample fodler as pth file.

The overfitted surface can be generated with:

python -m show_surface_map

please, set the path to the pth file just created inside the script.

4. Neural parametrization

Generating a neural parametrization need to run:

python -m training_parametrization_map dataset.sample_path=your_surface_map.pth

Like for the overfitting, this saves the map inside outputs/neural_maps folder. The folder name have the following patterns parametrization_[timestamp].

To display the paramtrization obtained run:

python -m show_parametrization_map

please, set the path to the pth file just created inside the script.

5. Optimize surface-to-surface map

To generating a inter-surface map run:

python -m training_intersurface_map dataset.sample_path_g=your_surface_map_a.pth dataset.sample_path_f=your_surface_map_b.pth

Note, this steps requires two surface maps. A source, sample_path_g, and a target, sample_path_f.

Likewise the overfitting, the map is saved inside outputs/neural_maps. The inter-surface map folder pattern is intersurface_[timestamp]. The pth file is inside the models folder.

To display the inter-surface map run:

python -m show_intersurface_map

remember to set the path of the maps inside the script.

6. Optimize collection map

A collection between a set of surface maps can be optimized with:

python -m training_intersurface_map dataset.sample_path_g=your_surface_map_g.pth dataset.sample_path_f=your_surface_map_f.pth dataset.sample_path_q=your_surface_map_q.pth

Note, this steps requires three surface maps. A source, sample_path_g, and two targets, sample_path_f and sample_path_q.

This will save two maps inside outputs/neural_maps folder. The folder name follows this patterns: collection_[timestamp], under the folder models you can find two *.pth file.

To display the collection map run:

python -m show_collection_map

remember to set the path of maps inside the script.


Dependencies

Dependencies are listed in environment.yml. Using conda, all the packages can be installed with conda env create -f environment.yml.

On top of the packages above, please install also pytorch svd on gpu package.


Data

Any mesh can be used for this process. A data example can be downloaded here.


Citation

@misc{morreale2021neural,
      title={Neural Surface Maps},
      author={Luca Morreale and Noam Aigerman and Vladimir Kim and Niloy J. Mitra},
      year={2021},
      eprint={2103.16942},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

References

[1] Scalable locally injective mappings - Michael Rabinovich et. al. - ACM Transactions on Graphics (TOG) 2017

You might also like...
 Differentiable Surface Triangulation
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

The official implementation code of
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Deep Surface Reconstruction from Point Clouds with Visibility Information
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

(CVPR 2022 Oral) Official implementation for
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

Comments
  • Errors in reproducing results correctly by training models

    Errors in reproducing results correctly by training models

    I tried running the code using the given checkpoints and was able to verify the results. The meshes obtained with texture applied are as follows:

    bimba_beethoven_pre_trained_models

    But when I tried steps 2-5 on my own, I received some inconsistent results. The inter-surface maps were a bit off. I have attached screenshots with texture applied on them

    bimba_beethoven_trained_models

    As can be seen, the mapping on the nose and the shoulder is a bit off center. The same is true for the other shoulder. I have uploaded the intersurface maps obtained in the link here

    This happened on multiple runs of the model and I am unable to figure out whether something is wrong with the way I am running the code or not.

    The steps I followed to obtain the model were as follows:

    1. Create output_sample.pth for bimba and beethoven models using the given parametrised mesh and their corresponding oversampled versions.
    2. Train a surface map using given output_sample.pth files. The config files given to hydra were unchanged.
    3. Create parameterisation map using the surface map of bimba and beethoven
    4. Create intersurface map using the surface map of bimba and beethoven
    5. Visualise the maps as meshes using show_surface_map, show_param_map, and show_intersurface_map.
    opened by VolgZangeif 2
  • Landmarks and Checkpoint

    Landmarks and Checkpoint

    We have the following lines in the train_intersurface_map.py SURFACE_PATH_F = '/SET/HERE/YOUR/PATH' SURFACE_PATH_G = '/SET/HERE/YOUR/PATH' CHECKPOINT_PATH = '/SET/HERE/YOUR/PATH' landmarks_g = [] landmarks_f = []

    I have done Steps 1-4 for the source and the target mesh, thus I have two neural surface representation at output/parametrization[timestamp]/_ for the source map and output/parametrization[timestamp]/_ for the target map.

    Do I need to provide the path of the pth file inside output/parametrization[timestamp]/_ for SURFACE_PATH_G and SURFACE_PATH_F ?

    What is CHECKPOINT_PATH and how can I get the landmarks for the two meshes?

    What are the landmarks for Bimba to Beethoven example?

    opened by ricoseeds 1
Owner
Luca Morreale
Luca Morreale
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 5, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

null 85 Jan 4, 2023
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 9, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 5, 2023
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 5, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 4, 2023