Deep functional residue identification

Overview

DeepFRI

Deep functional residue identification

Citing

@article {Gligorijevic2019,
	author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Kosciolek, Tomasz and Leman,
	Julia Koehler and Cho, Kyunghyun and Vatanen, Tommi and Berenberg, Daniel
	and Taylor, Bryn and Fisk, Ian M. and Xavier, Ramnik J. and Knight, Rob and Bonneau, Richard},
	title = {Structure-Based Function Prediction using Graph Convolutional Networks},
	year = {2019},
	doi = {10.1101/786236},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2019/10/04/786236},
	journal = {bioRxiv}
}

Dependencies

DeepFRI is tested to work under Python 3.7.

The required dependencies for DeepFRI are TensorFlow, Biopython and scikit-learn. To install all dependencies run:

pip install .

Protein function prediction

To predict protein functions use predict.py script with the following options:

  • seq str, Protein sequence as a string
  • cmap str, Name of a file storing a protein contact map and sequence in *.npz file format (with the following numpy array variables: C_alpha, seqres. See examples/pdb_cmaps/)
  • pdb str, Name of a PDB file (cleaned)
  • pdb_dir str, Directory with cleaned PDB files (see examples/pdb_files/)
  • cmap_csv str, Filename of the catalogue (in *.csv file format) containg mapping between protein names and directory with *.npz files (see examples/catalogue_pdb_chains.csv)
  • fasta_fn str, Fasta filename (see examples/pdb_chains.fasta)
  • model_config str, JSON file with model filenames (see trained_models/)
  • ont str, Ontology (mf - Molecular Function, bp - Biological Process, cc - Cellular Component, ec - Enzyme Commission)
  • output_fn_prefix str, Output filename (sampe prefix for predictions/saliency will be used)
  • verbose bool, Whether or not to print function prediction results
  • saliency bool, Whether or not to compute class activaton maps (outputs a *.json file)

Generated files (see examples/outputs/):

  • output_fn_prefix_MF_predictions.csv Predictions in the *.csv file format with columns: Protein, GO-term/EC-number, Score, GO-term/EC-number name
  • output_fn_prefix_MF_pred_scores.json Predictions in the *.json file with keys: pdb_chains, Y_hat, goterms, gonames
  • output_fn_prefix_MF_saliency_maps.json JSON file storing a dictionary of saliency maps for each predicted function of every protein

DeepFRI offers 6 possible options for predicting functions. See examples below.

Option 1: predicting functions of a protein from its contact map

Example: predicting MF-GO terms for Parvalbumin alpha protein using its sequence and contact map (PDB: 1S3P):

>> python predict.py --cmap ./examples/pdb_cmaps/1S3P-A.npz -ont mf --verbose

Output:

Protein GO-term/EC-number Score GO-term/EC-number name
query_prot GO:0005509 0.99824 calcium ion binding

Option 2: predicting functions of a protein from its sequence

Example: predicting MF-GO terms for Parvalbumin alpha protein using its sequence (PDB: 1S3P):

>> python predict.py --seq 'SMTDLLSAEDIKKAIGAFTAADSFDHKKFFQMVGLKKKSADDVKKVFHILDKDKDGFIDEDELGSILKGFSSDARDLSAKETKTLMAAGDKDGDGKIGVEEFSTLVAES' -ont mf --verbose

Output:

Protein GO-term/EC-number Score GO-term/EC-number name
query_prot GO:0005509 0.99769 calcium ion binding

Option 3: predicting functions of proteins from a fasta file

>> python predict.py --fasta_fn examples/pdb_chains.fasta -ont mf -v

Output:

Protein GO-term/EC-number Score GO-term/EC-number name
1S3P-A GO:0005509 0.99769 calcium ion binding
2J9H-A GO:0004364 0.46937 glutathione transferase activity
2J9H-A GO:0016765 0.19910 transferase activity, transferring alkyl or aryl
(other than methyl) groups
2J9H-A GO:0097367 0.10537 carbohydrate derivative binding
2PE5-B GO:0003677 0.53502 DNA binding
2W83-E GO:0032550 0.99260 purine ribonucleoside binding
2W83-E GO:0001883 0.99242 purine nucleoside binding
2W83-E GO:0005525 0.99231 GTP binding
2W83-E GO:0019001 0.99222 guanyl nucleotide binding
2W83-E GO:0032561 0.99194 guanyl ribonucleotide binding
2W83-E GO:0032549 0.99149 ribonucleoside binding
2W83-E GO:0001882 0.99135 nucleoside binding
2W83-E GO:0017076 0.98687 purine nucleotide binding
2W83-E GO:0032555 0.98641 purine ribonucleotide binding
2W83-E GO:0035639 0.98611 purine ribonucleoside triphosphate binding
2W83-E GO:0032553 0.98573 ribonucleotide binding
2W83-E GO:0097367 0.98168 carbohydrate derivative binding
2W83-E GO:0003924 0.52355 GTPase activity
2W83-E GO:0016817 0.36863 hydrolase activity, acting on acid anhydrides
2W83-E GO:0016818 0.36683 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides
2W83-E GO:0017111 0.35465 nucleoside-triphosphatase activity
2W83-E GO:0016462 0.35303 pyrophosphatase activity

Option 4: predicting functions of proteins from contact map catalogue

>> python predict.py --cmap_csv examples/catalogue_pdb_chains.csv -ont mf -v

Output:

Protein GO-term/EC-number Score GO-term/EC-number name
1S3P-A GO:0005509 0.99824 calcium ion binding
2J9H-A GO:0004364 0.84826 glutathione transferase activity
2J9H-A GO:0016765 0.82014 transferase activity, transferring alkyl or aryl
(other than methyl) groups
2PE5-B GO:0003677 0.89086 DNA binding
2PE5-B GO:0017111 0.12892 nucleoside-triphosphatase activity
2PE5-B GO:0004386 0.12847 helicase activity
2PE5-B GO:0032553 0.12091 ribonucleotide binding
2PE5-B GO:0097367 0.11961 carbohydrate derivative binding
2PE5-B GO:0016887 0.11331 ATPase activity
2W83-E GO:0097367 0.97069 carbohydrate derivative binding
2W83-E GO:0019001 0.96842 guanyl nucleotide binding
2W83-E GO:0017076 0.96737 purine nucleotide binding
2W83-E GO:0001882 0.96473 nucleoside binding
2W83-E GO:0035639 0.96439 purine ribonucleoside triphosphate binding
2W83-E GO:0032555 0.96294 purine ribonucleotide binding
2W83-E GO:0016818 0.96181 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides
2W83-E GO:0032550 0.96142 purine ribonucleoside binding
2W83-E GO:0016817 0.96082 hydrolase activity, acting on acid anhydrides
2W83-E GO:0016462 0.95998 pyrophosphatase activity
2W83-E GO:0032553 0.95935 ribonucleotide binding
2W83-E GO:0032561 0.95930 guanyl ribonucleotide binding
2W83-E GO:0032549 0.95877 ribonucleoside binding
2W83-E GO:0003924 0.95453 GTPase activity
2W83-E GO:0001883 0.95271 purine nucleoside binding
2W83-E GO:0005525 0.94635 GTP binding
2W83-E GO:0017111 0.93942 nucleoside-triphosphatase activity
2W83-E GO:0044877 0.64519 protein-containing complex binding
2W83-E GO:0001664 0.31413 G protein-coupled receptor binding
2W83-E GO:0005102 0.20078 signaling receptor binding

Option 5: predicting functions of a protein from a PDB file

>> python predict.py -pdb ./examples/pdb_files/1S3P-A.pdb -ont mf -v

Output:

Protein GO-term/EC-number Score GO-term/EC-number name
query_prot GO:0005509 0.99824 calcium ion binding

Option 6: predicting functions of a protein from a directory with PDB files

>> python predict.py --pdb_dir ./examples/pdb_files -ont mf --saliency --use_backprop

Output:

See files in: examples/outputs/

Training DeepFRI

To train DeepFRI run the following command from the project directory:

>> python train_DeepFRI.py -h

or to launch jobs run the following script:

>> ./run_train_DeepFRI.sh

Output

Generated files:

  • model_name_prefix_ont_model.hdf5 trained model with architecture and weights saved in HDF5 format
  • model_name_prefix_ont_pred_scores.pckl pickle file with predicted GO term/EC number scores for test proteins
  • model_name_prefix_ont_model_params.json JSON file with metadata (GO terms/names, architecture params, etc.)

See examples of pre-trained models (*.hdf5) and model params (*.json) in: trained_models/.

Functional residue identification

To visualize class activation (saliency) maps use viz_gradCAM.py script with the following options:

  • saliency_fn str, JSON filename with saliency maps generated by predict.py script (see Option 6 above)
  • list_all bool, list all proteins and their predicted GO terms with corresponding class activation (saliency) maps
  • protein_id str, protein (PDB chain), saliency maps of which are to be visualized for each predicted function
  • go_id str, GO term, saliency maps of which are to be visualized
  • go_name str, GO name, saliency maps of which are to be visualized

Generated files:

  • saliency_fig_PDB-chain_GOterm.png class activation (saliency) map profile over sequence (see fig below, right)
  • pymol_viz.py pymol script for mapping salient residues onto 3D structure (pymol output is shown in fig below, left)

Example:

>>> python viz_gradCAM.py -i ./examples/outputs/DeepFRI_MF_saliency_maps.json -p 1S3P-A -go GO:0005509

Output:

Data

Data (train and validation) used for training DeepFRI model are provided as TensorFlow-specific TFRecord files and they can be downloaded from:

PDB SWISS-MODEL
Gene Ontology(19GB) Gene Ontology(165GB)
Enzyme Commission(13GB) Enzyme Commission(117GB)

Pretrained models

Pretrained models can be downloaded from:

  • Models (use these models if you run DeepFRI on GPU)
  • Newest Models (use these models if you run DeepFRI on CPU)

Uncompress tar.gz file into the DeepFRI directory (tar xvzf trained_models.tar.gz -C /path/to/DeepFRI).

Comments
  • Cannot get your data

    Cannot get your data

    The link of the bc-95.out is not available,which is https://cdn.rcsb.org/resources/sequence/clusters/bc-95.out Can you update it so that we can enjoy it again, thanks!

    opened by Yechonghang 2
  • Saliency output format

    Saliency output format

    I'm noticing that there are pickle files that are the output of deepfri.

    There are a few immediate reasons why this may not be advantageous

    1. Pickle files are specific for python - can't parse them in another language
    2. There are security issues surrounding python
    3. There are likely to be version issues that pop up due to the choice of python and numpy, where one user has numpy=1.10, but the pickle can only be read in 1.17 (these issues do actually happen).

    Looking inside of the contents, it looks like this can be easily encoded as a json format, which is a more forgiving format.

    opened by mortonjt 2
  • Bump tensorflow-gpu from 2.3.1 to 2.7.2

    Bump tensorflow-gpu from 2.3.1 to 2.7.2

    Bumps tensorflow-gpu from 2.3.1 to 2.7.2.

    Release notes

    Sourced from tensorflow-gpu's releases.

    TensorFlow 2.7.2

    Release 2.7.2

    This releases introduces several vulnerability fixes:

    TensorFlow 2.7.1

    Release 2.7.1

    This releases introduces several vulnerability fixes:

    • Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725)
    • Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728)
    • Fixes a heap OOB access in Dequantize (CVE-2022-21726)
    • Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727)
    • Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730)
    • Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729)
    • Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731)
    • Fixes an OOM in ThreadPoolHandle (CVE-2022-21732)
    • Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733)
    • Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567)
    • Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568)

    ... (truncated)

    Changelog

    Sourced from tensorflow-gpu's changelog.

    Release 2.7.2

    This releases introduces several vulnerability fixes:

    Release 2.6.4

    This releases introduces several vulnerability fixes:

    • Fixes a code injection in saved_model_cli (CVE-2022-29216)
    • Fixes a missing validation which causes TensorSummaryV2 to crash (CVE-2022-29193)
    • Fixes a missing validation which crashes QuantizeAndDequantizeV4Grad (CVE-2022-29192)
    • Fixes a missing validation which causes denial of service via DeleteSessionTensor (CVE-2022-29194)
    • Fixes a missing validation which causes denial of service via GetSessionTensor (CVE-2022-29191)
    • Fixes a missing validation which causes denial of service via StagePeek (CVE-2022-29195)
    • Fixes a missing validation which causes denial of service via UnsortedSegmentJoin (CVE-2022-29197)
    • Fixes a missing validation which causes denial of service via LoadAndRemapMatrix (CVE-2022-29199)
    • Fixes a missing validation which causes denial of service via SparseTensorToCSRSparseMatrix (CVE-2022-29198)
    • Fixes a missing validation which causes denial of service via LSTMBlockCell (CVE-2022-29200)
    • Fixes a missing validation which causes denial of service via Conv3DBackpropFilterV2 (CVE-2022-29196)
    • Fixes a CHECK failure in depthwise ops via overflows (CVE-2021-41197)
    • Fixes issues arising from undefined behavior stemming from users supplying invalid resource handles (CVE-2022-29207)
    • Fixes a segfault due to missing support for quantized types (CVE-2022-29205)
    • Fixes a missing validation which results in undefined behavior in SparseTensorDenseAdd (CVE-2022-29206)

    ... (truncated)

    Commits
    • dd7b8a3 Merge pull request #56034 from tensorflow-jenkins/relnotes-2.7.2-15779
    • 1e7d6ea Update RELEASE.md
    • 5085135 Merge pull request #56069 from tensorflow/mm-cp-52488e5072f6fe44411d70c6af09e...
    • adafb45 Merge pull request #56060 from yongtang:curl-7.83.1
    • 01cb1b8 Merge pull request #56038 from tensorflow-jenkins/version-numbers-2.7.2-4733
    • 8c90c2f Update version numbers to 2.7.2
    • 43f3cdc Update RELEASE.md
    • 98b0a48 Insert release notes place-fill
    • dfa5cf3 Merge pull request #56028 from tensorflow/disable-tests-on-r2.7
    • 501a65c Disable timing out tests
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump tensorflow-gpu from 2.3.1 to 2.6.4

    Bump tensorflow-gpu from 2.3.1 to 2.6.4

    Bumps tensorflow-gpu from 2.3.1 to 2.6.4.

    Release notes

    Sourced from tensorflow-gpu's releases.

    TensorFlow 2.6.4

    Release 2.6.4

    This releases introduces several vulnerability fixes:

    TensorFlow 2.6.3

    Release 2.6.3

    This releases introduces several vulnerability fixes:

    • Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725)
    • Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728)
    • Fixes a heap OOB access in Dequantize (CVE-2022-21726)
    • Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727)
    • Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730)
    • Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729)
    • Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731)
    • Fixes an OOM in ThreadPoolHandle (CVE-2022-21732)
    • Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733)
    • Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567)
    • Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568)
    • Fixes a number of CHECK-failures in MapStage (CVE-2022-21734)

    ... (truncated)

    Changelog

    Sourced from tensorflow-gpu's changelog.

    Release 2.6.4

    This releases introduces several vulnerability fixes:

    Release 2.8.0

    Major Features and Improvements

    • tf.lite:

      • Added TFLite builtin op support for the following TF ops:
        • tf.raw_ops.Bucketize op on CPU.
        • tf.where op for data types tf.int32/tf.uint32/tf.int8/tf.uint8/tf.int64.
        • tf.random.normal op for output data type tf.float32 on CPU.
        • tf.random.uniform op for output data type tf.float32 on CPU.
        • tf.random.categorical op for output data type tf.int64 on CPU.
    • tensorflow.experimental.tensorrt:

      • conversion_params is now deprecated inside TrtGraphConverterV2 in favor of direct arguments: max_workspace_size_bytes, precision_mode, minimum_segment_size, maximum_cached_engines, use_calibration and

    ... (truncated)

    Commits
    • 33ed2b1 Merge pull request #56102 from tensorflow/mihaimaruseac-patch-1
    • e1ec480 Fix build due to importlib-metadata/setuptools
    • 63f211c Merge pull request #56033 from tensorflow-jenkins/relnotes-2.6.4-6677
    • 22b8fe4 Update RELEASE.md
    • ec30684 Merge pull request #56070 from tensorflow/mm-cp-adafb45c781-on-r2.6
    • 38774ed Merge pull request #56060 from yongtang:curl-7.83.1
    • 9ef1604 Merge pull request #56036 from tensorflow-jenkins/version-numbers-2.6.4-9925
    • a6526a3 Update version numbers to 2.6.4
    • cb1a481 Update RELEASE.md
    • 4da550f Insert release notes place-fill
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump tensorflow-gpu from 2.3.1 to 2.5.3

    Bump tensorflow-gpu from 2.3.1 to 2.5.3

    Bumps tensorflow-gpu from 2.3.1 to 2.5.3.

    Release notes

    Sourced from tensorflow-gpu's releases.

    TensorFlow 2.5.3

    Release 2.5.3

    Note: This is the last release in the 2.5 series.

    This releases introduces several vulnerability fixes:

    • Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725)
    • Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728)
    • Fixes a heap OOB access in Dequantize (CVE-2022-21726)
    • Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727)
    • Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730)
    • Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729)
    • Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731)
    • Fixes an OOM in ThreadPoolHandle (CVE-2022-21732)
    • Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733)
    • Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567)
    • Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568)
    • Fixes a number of CHECK-failures in MapStage (CVE-2022-21734)
    • Fixes a division by zero in FractionalMaxPool (CVE-2022-21735)
    • Fixes a number of CHECK-fails when building invalid/overflowing tensor shapes (CVE-2022-23569)
    • Fixes an undefined behavior in SparseTensorSliceDataset (CVE-2022-21736)
    • Fixes an assertion failure based denial of service via faulty bin count operations (CVE-2022-21737)
    • Fixes a reference binding to null pointer in QuantizedMaxPool (CVE-2022-21739)
    • Fixes an integer overflow leading to crash in SparseCountSparseOutput (CVE-2022-21738)
    • Fixes a heap overflow in SparseCountSparseOutput (CVE-2022-21740)
    • Fixes an FPE in BiasAndClamp in TFLite (CVE-2022-23557)
    • Fixes an FPE in depthwise convolutions in TFLite (CVE-2022-21741)
    • Fixes an integer overflow in TFLite array creation (CVE-2022-23558)
    • Fixes an integer overflow in TFLite (CVE-2022-23559)
    • Fixes a dangerous OOB write in TFLite (CVE-2022-23561)
    • Fixes a vulnerability leading to read and write outside of bounds in TFLite (CVE-2022-23560)
    • Fixes a set of vulnerabilities caused by using insecure temporary files (CVE-2022-23563)
    • Fixes an integer overflow in Range resulting in undefined behavior and OOM (CVE-2022-23562)
    • Fixes a vulnerability where missing validation causes tf.sparse.split to crash when axis is a tuple (CVE-2021-41206)
    • Fixes a CHECK-fail when decoding resource handles from proto (CVE-2022-23564)
    • Fixes a CHECK-fail with repeated AttrDef (CVE-2022-23565)
    • Fixes a heap OOB write in Grappler (CVE-2022-23566)
    • Fixes a CHECK-fail when decoding invalid tensors from proto (CVE-2022-23571)
    • Fixes an unitialized variable access in AssignOp (CVE-2022-23573)
    • Fixes an integer overflow in OpLevelCostEstimator::CalculateTensorSize (CVE-2022-23575)
    • Fixes an integer overflow in OpLevelCostEstimator::CalculateOutputSize (CVE-2022-23576)
    • Fixes a null dereference in GetInitOp (CVE-2022-23577)
    • Fixes a memory leak when a graph node is invalid (CVE-2022-23578)
    • Fixes an abort caused by allocating a vector that is too large (CVE-2022-23580)
    • Fixes multiple CHECK-failures during Grappler's IsSimplifiableReshape (CVE-2022-23581)
    • Fixes multiple CHECK-failures during Grappler's SafeToRemoveIdentity (CVE-2022-23579)
    • Fixes multiple CHECK-failures in TensorByteSize (CVE-2022-23582)
    • Fixes multiple CHECK-failures in binary ops due to type confusion (CVE-2022-23583)

    ... (truncated)

    Changelog

    Sourced from tensorflow-gpu's changelog.

    Release 2.5.3

    This releases introduces several vulnerability fixes:

    • Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725)
    • Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728)
    • Fixes a heap OOB access in Dequantize (CVE-2022-21726)
    • Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727)
    • Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730)
    • Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729)
    • Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731)
    • Fixes an OOM in ThreadPoolHandle (CVE-2022-21732)
    • Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733)
    • Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567)
    • Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568)
    • Fixes a number of CHECK-failures in MapStage (CVE-2022-21734)
    • Fixes a division by zero in FractionalMaxPool (CVE-2022-21735)
    • Fixes a number of CHECK-fails when building invalid/overflowing tensor shapes (CVE-2022-23569)
    • Fixes an undefined behavior in SparseTensorSliceDataset (CVE-2022-21736)
    • Fixes an assertion failure based denial of service via faulty bin count operations (CVE-2022-21737)
    • Fixes a reference binding to null pointer in QuantizedMaxPool (CVE-2022-21739)
    • Fixes an integer overflow leading to crash in SparseCountSparseOutput (CVE-2022-21738)
    • Fixes a heap overflow in SparseCountSparseOutput (CVE-2022-21740)
    • Fixes an FPE in BiasAndClamp in TFLite (CVE-2022-23557)
    • Fixes an FPE in depthwise convolutions in TFLite (CVE-2022-21741)

    ... (truncated)

    Commits
    • 959e9b2 Merge pull request #54213 from tensorflow/fix-sanity-on-r2.5
    • d05fcbc Fix sanity build
    • f2526a0 Merge pull request #54205 from tensorflow/disable-flaky-tests-on-r2.5
    • a5f94df Disable flaky test
    • 7babe52 Merge pull request #54201 from tensorflow/cherrypick-510ae18200d0a4fad797c0bf...
    • 0e5d378 Set Env Variable to override Setuptools new behavior
    • fdd4195 Merge pull request #54176 from tensorflow-jenkins/relnotes-2.5.3-6805
    • 4083165 Update RELEASE.md
    • a2bb7f1 Merge pull request #54185 from tensorflow/cherrypick-d437dec4d549fc30f9b85c75...
    • 5777ea3 Update third_party/icu/workspace.bzl
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump tensorflow-gpu from 2.3.1 to 2.5.1

    Bump tensorflow-gpu from 2.3.1 to 2.5.1

    Bumps tensorflow-gpu from 2.3.1 to 2.5.1.

    Release notes

    Sourced from tensorflow-gpu's releases.

    TensorFlow 2.5.1

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)
    • Fixes a division by 0 in ResourceScatterDiv (CVE-2021-37642)
    • Fixes a heap OOB in RaggedGather (CVE-2021-37641)
    • Fixes a std::abort raised from TensorListReserve (CVE-2021-37644)
    • Fixes a null pointer dereference in MatrixDiagPartOp (CVE-2021-37643)
    • Fixes an integer overflow due to conversion to unsigned (CVE-2021-37645)
    • Fixes a bad allocation error in StringNGrams caused by integer conversion (CVE-2021-37646)
    • Fixes a null pointer dereference in SparseTensorSliceDataset (CVE-2021-37647)
    • Fixes an incorrect validation of SaveV2 inputs (CVE-2021-37648)
    • Fixes a null pointer dereference in UncompressElement (CVE-2021-37649)
    • Fixes a segfault and a heap buffer overflow in {Experimental,}DatasetToTFRecord (CVE-2021-37650)
    • Fixes a heap buffer overflow in FractionalAvgPoolGrad (CVE-2021-37651)
    • Fixes a use after free in boosted trees creation (CVE-2021-37652)
    • Fixes a division by 0 in ResourceGather (CVE-2021-37653)
    • Fixes a heap OOB and a CHECK fail in ResourceGather (CVE-2021-37654)
    • Fixes a heap OOB in ResourceScatterUpdate (CVE-2021-37655)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToSparse (CVE-2021-37656)
    • Fixes an undefined behavior arising from reference binding to nullptr in MatrixDiagV* ops (CVE-2021-37657)
    • Fixes an undefined behavior arising from reference binding to nullptr in MatrixSetDiagV* ops (CVE-2021-37658)
    • Fixes an undefined behavior arising from reference binding to nullptr and heap OOB in binary cwise ops (CVE-2021-37659)
    • Fixes a division by 0 in inplace operations (CVE-2021-37660)
    • Fixes a crash caused by integer conversion to unsigned (CVE-2021-37661)
    • Fixes an undefined behavior arising from reference binding to nullptr in boosted trees (CVE-2021-37662)
    • Fixes a heap OOB in boosted trees (CVE-2021-37664)
    • Fixes vulnerabilities arising from incomplete validation in QuantizeV2 (CVE-2021-37663)
    • Fixes vulnerabilities arising from incomplete validation in MKL requantization (CVE-2021-37665)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToVariant (CVE-2021-37666)
    • Fixes an undefined behavior arising from reference binding to nullptr in unicode encoding (CVE-2021-37667)
    • Fixes an FPE in tf.raw_ops.UnravelIndex (CVE-2021-37668)
    • Fixes a crash in NMS ops caused by integer conversion to unsigned (CVE-2021-37669)
    • Fixes a heap OOB in UpperBound and LowerBound (CVE-2021-37670)
    • Fixes an undefined behavior arising from reference binding to nullptr in map operations (CVE-2021-37671)
    • Fixes a heap OOB in SdcaOptimizerV2 (CVE-2021-37672)
    • Fixes a CHECK-fail in MapStage (CVE-2021-37673)
    • Fixes a vulnerability arising from incomplete validation in MaxPoolGrad (CVE-2021-37674)
    • Fixes an undefined behavior arising from reference binding to nullptr in shape inference (CVE-2021-37676)
    • Fixes a division by 0 in most convolution operators (CVE-2021-37675)
    • Fixes vulnerabilities arising from missing validation in shape inference for Dequantize (CVE-2021-37677)
    • Fixes an arbitrary code execution due to YAML deserialization (CVE-2021-37678)
    • Fixes a heap OOB in nested tf.map_fn with RaggedTensors (CVE-2021-37679)

    ... (truncated)

    Changelog

    Sourced from tensorflow-gpu's changelog.

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)
    • Fixes a division by 0 in ResourceScatterDiv (CVE-2021-37642)
    • Fixes a heap OOB in RaggedGather (CVE-2021-37641)
    • Fixes a std::abort raised from TensorListReserve (CVE-2021-37644)
    • Fixes a null pointer dereference in MatrixDiagPartOp (CVE-2021-37643)
    • Fixes an integer overflow due to conversion to unsigned (CVE-2021-37645)
    • Fixes a bad allocation error in StringNGrams caused by integer conversion (CVE-2021-37646)
    • Fixes a null pointer dereference in SparseTensorSliceDataset (CVE-2021-37647)
    • Fixes an incorrect validation of SaveV2 inputs (CVE-2021-37648)
    • Fixes a null pointer dereference in UncompressElement (CVE-2021-37649)
    • Fixes a segfault and a heap buffer overflow in {Experimental,}DatasetToTFRecord (CVE-2021-37650)
    • Fixes a heap buffer overflow in FractionalAvgPoolGrad (CVE-2021-37651)
    • Fixes a use after free in boosted trees creation (CVE-2021-37652)
    • Fixes a division by 0 in ResourceGather (CVE-2021-37653)
    • Fixes a heap OOB and a CHECK fail in ResourceGather (CVE-2021-37654)
    • Fixes a heap OOB in ResourceScatterUpdate (CVE-2021-37655)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToSparse

    ... (truncated)

    Commits
    • 8222c1c Merge pull request #51381 from tensorflow/mm-fix-r2.5-build
    • d584260 Disable broken/flaky test
    • f6c6ce3 Merge pull request #51367 from tensorflow-jenkins/version-numbers-2.5.1-17468
    • 3ca7812 Update version numbers to 2.5.1
    • 4fdf683 Merge pull request #51361 from tensorflow/mm-update-relnotes-on-r2.5
    • 05fc01a Put CVE numbers for fixes in parentheses
    • bee1dc4 Update release notes for the new patch release
    • 47beb4c Merge pull request #50597 from kruglov-dmitry/v2.5.0-sync-abseil-cmake-bazel
    • 6f39597 Merge pull request #49383 from ashahab/abin-load-segfault-r2.5
    • 0539b34 Merge pull request #48979 from liufengdb/r2.5-cherrypick
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • -ont bp error on predict.py

    -ont bp error on predict.py

    Hi, I think there is a problem with the pre-trained file for the bp ontology, can you take a look? Thanks!

    Here is the error I got:

    OSError: SavedModel file does not exist at: ./trained_models/DeepFRI-MERGED_MultiGraphConv_3x512_fcd_1024_ca_10A_biological_process.hdf5/{saved_model.pbtxt|saved_model.pb}

    opened by bl-2633 1
  • Cannot get your data, invalid links!

    Cannot get your data, invalid links!

    It seems that the link of your PDB data is not available anymore, which is https://users.flatironinstitute.org/vgligorijevic/public_www/DeepFRI_data/PDB-GO.tar.gz.

    Can you update it so that we can enjoy it again, thanks! XD

    opened by maovshao 1
  • Bump tensorflow-gpu from 2.2.0 to 2.3.1

    Bump tensorflow-gpu from 2.2.0 to 2.3.1

    Bumps tensorflow-gpu from 2.2.0 to 2.3.1.

    Release notes

    Sourced from tensorflow-gpu's releases.

    TensorFlow 2.3.1

    Release 2.3.1

    Bug Fixes and Other Changes

    TensorFlow 2.3.0

    Release 2.3.0

    Major Features and Improvements

    • tf.data adds two new mechanisms to solve input pipeline bottlenecks and save resources:

    In addition checkout the detailed guide for analyzing input pipeline performance with TF Profiler.

    • tf.distribute.TPUStrategy is now a stable API and no longer considered experimental for TensorFlow. (earlier tf.distribute.experimental.TPUStrategy).

    • TF Profiler introduces two new tools: a memory profiler to visualize your model’s memory usage over time and a python tracer which allows you to trace python function calls in your model. Usability improvements include better diagnostic messages and profile options to customize the host and device trace verbosity level.

    • Introduces experimental support for Keras Preprocessing Layers API (tf.keras.layers.experimental.preprocessing.*) to handle data preprocessing operations, with support for composite tensor inputs. Please see below for additional details on these layers.

    • TFLite now properly supports dynamic shapes during conversion and inference. We’ve also added opt-in support on Android and iOS for XNNPACK, a highly optimized set of CPU kernels, as well as opt-in support for executing quantized models on the GPU.

    • Libtensorflow packages are available in GCS starting this release. We have also started to release a nightly version of these packages.

    • The experimental Python API tf.debugging.experimental.enable_dump_debug_info() now allows you to instrument a TensorFlow program and dump debugging information to a directory on the file system. The directory can be read and visualized by a new interactive dashboard in TensorBoard 2.3 called Debugger V2, which reveals the details of the TensorFlow program including graph structures, history of op executions at the Python (eager) and intra-graph levels, the runtime dtype, shape, and numerical composistion of tensors, as well as their code locations.

    Breaking Changes

    • Increases the minimum bazel version required to build TF to 3.1.0.
    • tf.data
      • Makes the following (breaking) changes to the tf.data.
      • C++ API: - IteratorBase::RestoreInternal, IteratorBase::SaveInternal, and DatasetBase::CheckExternalState become pure-virtual and subclasses are now expected to provide an implementation.
      • The deprecated DatasetBase::IsStateful method is removed in favor of DatasetBase::CheckExternalState.
      • Deprecated overrides of DatasetBase::MakeIterator and MakeIteratorFromInputElement are removed.

    ... (truncated)

    Changelog

    Sourced from tensorflow-gpu's changelog.

    Release 2.3.1

    Bug Fixes and Other Changes

    Release 2.2.1

    ... (truncated)

    Commits
    • fcc4b96 Merge pull request #43446 from tensorflow-jenkins/version-numbers-2.3.1-16251
    • 4cf2230 Update version numbers to 2.3.1
    • eee8224 Merge pull request #43441 from tensorflow-jenkins/relnotes-2.3.1-24672
    • 0d41b1d Update RELEASE.md
    • d99bd63 Insert release notes place-fill
    • d71d3ce Merge pull request #43414 from tensorflow/mihaimaruseac-patch-1-1
    • 9c91596 Fix missing import
    • f9f12f6 Merge pull request #43391 from tensorflow/mihaimaruseac-patch-4
    • 3ed271b Solve leftover from merge conflict
    • 9cf3773 Merge pull request #43358 from tensorflow/mm-patch-r2.3
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump tensorflow-gpu from 1.10.0 to 1.15.4

    Bump tensorflow-gpu from 1.10.0 to 1.15.4

    ⚠ Dependabot is rebasing this PR ⚠

    If you make any changes to it yourself then they will take precedence over the rebase.


    Bumps tensorflow-gpu from 1.10.0 to 1.15.4.

    Release notes

    Sourced from tensorflow-gpu's releases.

    TensorFlow 1.15.4

    Release 1.15.4

    Bug Fixes and Other Changes

    TensorFlow 1.15.3

    Bug Fixes and Other Changes

    TensorFlow 1.15.2

    Release 1.15.2

    Note that this release no longer has a single pip package for GPU and CPU. Please see #36347 for history and details

    Bug Fixes and Other Changes

    TensorFlow 1.15.0

    Release 1.15.0

    This is the last 1.x release for TensorFlow. We do not expect to update the 1.x branch with features, although we will issue patch releases to fix vulnerabilities for at least one year.

    Major Features and Improvements

    • As announced, tensorflow pip package will by default include GPU support (same as tensorflow-gpu now) for the platforms we currently have GPU support (Linux and Windows). It will work on machines with and without Nvidia GPUs. tensorflow-gpu will still be available, and CPU-only packages can be downloaded at tensorflow-cpu for users who are concerned about package size.
    • TensorFlow 1.15 contains a complete implementation of the 2.0 API in its compat.v2 module. It contains a copy of the 1.15 main module (without contrib) in the compat.v1 module. TensorFlow 1.15 is able to emulate 2.0 behavior using the enable_v2_behavior() function. This enables writing forward compatible code: by explicitly importing either tensorflow.compat.v1 or tensorflow.compat.v2, you can ensure that your code works without modifications against an installation of 1.15 or 2.0.
    • EagerTensor now supports numpy buffer interface for tensors.
    • Add toggles tf.enable_control_flow_v2() and tf.disable_control_flow_v2() for enabling/disabling v2 control flow.
    • Enable v2 control flow as part of tf.enable_v2_behavior() and TF2_BEHAVIOR=1.
    • AutoGraph translates Python control flow into TensorFlow expressions, allowing users to write regular Python inside tf.function-decorated functions. AutoGraph is also applied in functions used with tf.data, tf.distribute and tf.keras APIS.
    • Adds enable_tensor_equality(), which switches the behavior such that:
      • Tensors are no longer hashable.

    ... (truncated)

    Changelog

    Sourced from tensorflow-gpu's changelog.

    Release 1.15.4

    Bug Fixes and Other Changes

    Release 2.3.0

    Major Features and Improvements

    • tf.data adds two new mechanisms to solve input pipeline bottlenecks and save resources:

    ... (truncated)

    Commits
    • df8c55c Merge pull request #43442 from tensorflow-jenkins/version-numbers-1.15.4-31571
    • 0e8cbcb Update version numbers to 1.15.4
    • 5b65bf2 Merge pull request #43437 from tensorflow-jenkins/relnotes-1.15.4-10691
    • 814e8d8 Update RELEASE.md
    • 757085e Insert release notes place-fill
    • e99e53d Merge pull request #43410 from tensorflow/mm-fix-1.15
    • bad36df Add missing import
    • f3f1835 No disable_tfrt present on this branch
    • 7ef5c62 Merge pull request #43406 from tensorflow/mihaimaruseac-patch-1
    • abbf34a Remove import that is not needed
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • experimental data

    experimental data

    The link provided in this paper about the experimental data is no longer valid. Could you please send it to me?I think it's very helpful for me to understand your work.I really appreciate your positive response.Thank you very much!

    opened by XUHANLIN 1
  • About train details

    About train details

    Hello, I'm trying to train the model in the same dataset. Could you provide more details about training the model. I'm trying to train your model on the same dataset for task named "mf", but the model will converge in one epoch, and the final model weights doesn't perform as well as the trained models you provided.

    opened by TengQinglong 0
  • Bump tensorflow-gpu from 2.3.1 to 2.9.3

    Bump tensorflow-gpu from 2.3.1 to 2.9.3

    Bumps tensorflow-gpu from 2.3.1 to 2.9.3.

    Release notes

    Sourced from tensorflow-gpu's releases.

    TensorFlow 2.9.3

    Release 2.9.3

    This release introduces several vulnerability fixes:

    TensorFlow 2.9.2

    Release 2.9.2

    This releases introduces several vulnerability fixes:

    ... (truncated)

    Changelog

    Sourced from tensorflow-gpu's changelog.

    Release 2.9.3

    This release introduces several vulnerability fixes:

    Release 2.8.4

    This release introduces several vulnerability fixes:

    ... (truncated)

    Commits
    • a5ed5f3 Merge pull request #58584 from tensorflow/vinila21-patch-2
    • 258f9a1 Update py_func.cc
    • cd27cfb Merge pull request #58580 from tensorflow-jenkins/version-numbers-2.9.3-24474
    • 3e75385 Update version numbers to 2.9.3
    • bc72c39 Merge pull request #58482 from tensorflow-jenkins/relnotes-2.9.3-25695
    • 3506c90 Update RELEASE.md
    • 8dcb48e Update RELEASE.md
    • 4f34ec8 Merge pull request #58576 from pak-laura/c2.99f03a9d3bafe902c1e6beb105b2f2417...
    • 6fc67e4 Replace CHECK with returning an InternalError on failing to create python tuple
    • 5dbe90a Merge pull request #58570 from tensorflow/r2.9-7b174a0f2e4
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Error when using structures as input

    Error when using structures as input

    Hi I followed the instructions and successfully get predictions for single sequence or a fasta file of multiple sequences. However, when I try to make predictions for structures, I get the following error:

    (DeepFRI) yuanqm@gpu2:~/protein_function/DeepFRI$ python predict.py --cmap ./examples/pdb_cmaps/1S3P-A.npz -ont mf --verbose
    2022-11-07 22:03:37.689676: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
    2022-11-07 22:03:37.689727: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
    2022-11-07 22:03:38.802448: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1
    2022-11-07 22:03:38.839570: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: 
    pciBusID: 0000:3e:00.0 name: NVIDIA GeForce RTX 3090 computeCapability: 8.6
    coreClock: 1.695GHz coreCount: 82 deviceMemorySize: 23.70GiB deviceMemoryBandwidth: 871.81GiB/s
    2022-11-07 22:03:38.839863: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties: 
    pciBusID: 0000:40:00.0 name: NVIDIA GeForce RTX 3090 computeCapability: 8.6
    coreClock: 1.695GHz coreCount: 82 deviceMemorySize: 23.70GiB deviceMemoryBandwidth: 871.81GiB/s
    2022-11-07 22:03:38.840124: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 2 with properties: 
    pciBusID: 0000:b1:00.0 name: NVIDIA GeForce RTX 3090 computeCapability: 8.6
    coreClock: 1.695GHz coreCount: 82 deviceMemorySize: 23.70GiB deviceMemoryBandwidth: 871.81GiB/s
    2022-11-07 22:03:38.840397: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 3 with properties: 
    pciBusID: 0000:b5:00.0 name: NVIDIA GeForce RTX 3090 computeCapability: 8.6
    coreClock: 1.695GHz coreCount: 82 deviceMemorySize: 23.70GiB deviceMemoryBandwidth: 871.81GiB/s
    2022-11-07 22:03:38.840530: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
    2022-11-07 22:03:38.840596: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcublas.so.10'; dlerror: libcublas.so.10: cannot open shared object file: No such file or directory
    2022-11-07 22:03:38.886881: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10
    2022-11-07 22:03:38.887473: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10
    2022-11-07 22:03:38.887753: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory
    2022-11-07 22:03:38.887887: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcusparse.so.10'; dlerror: libcusparse.so.10: cannot open shared object file: No such file or directory
    2022-11-07 22:03:38.887957: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcudnn.so.7'; dlerror: libcudnn.so.7: cannot open shared object file: No such file or directory
    2022-11-07 22:03:38.887973: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1753] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
    Skipping registering GPU devices...
    2022-11-07 22:03:38.888385: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    2022-11-07 22:03:38.903619: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 3000000000 Hz
    2022-11-07 22:03:38.910226: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x3bd2270 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
    2022-11-07 22:03:38.910280: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
    2022-11-07 22:03:38.912764: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
    2022-11-07 22:03:38.912826: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263]      
    ### Computing predictions on a single protein...
    Traceback (most recent call last):
      File "predict.py", line 39, in <module>
        predictor.predict(args.cmap)
      File "/home/yuanqm/protein_function/DeepFRI/deepfrier/Predictor.py", line 109, in predict
        y = self.model([A, S], training=False).numpy()[:, :, 0].reshape(-1)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py", line 985, in __call__
        outputs = call_fn(inputs, *args, **kwargs)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py", line 386, in call
        inputs, training=training, mask=mask)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
        outputs = node.layer(*args, **kwargs)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py", line 985, in __call__
        outputs = call_fn(inputs, *args, **kwargs)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py", line 386, in call
        inputs, training=training, mask=mask)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py", line 508, in _run_internal_graph
        outputs = node.layer(*args, **kwargs)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/layers/recurrent.py", line 659, in __call__
        return super(RNN, self).__call__(inputs, **kwargs)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py", line 985, in __call__
        outputs = call_fn(inputs, *args, **kwargs)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/layers/cudnn_recurrent.py", line 110, in call
        output, states = self._process_batch(inputs, initial_state)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/keras/layers/cudnn_recurrent.py", line 507, in _process_batch
        outputs, h, c, _, _ = gen_cudnn_rnn_ops.cudnn_rnnv2(**args)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/ops/gen_cudnn_rnn_ops.py", line 1740, in cudnn_rnnv2
        ctx=_ctx)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/ops/gen_cudnn_rnn_ops.py", line 1817, in cudnn_rnnv2_eager_fallback
        attrs=_attrs, ctx=ctx, name=name)
      File "/home/yuanqm/anaconda3/envs/DeepFRI/lib/python3.7/site-packages/tensorflow/python/eager/execute.py", line 60, in quick_execute
        inputs, attrs, num_outputs)
    tensorflow.python.framework.errors_impl.NotFoundError: Could not find device for node: {{node CudnnRNNV2}} = CudnnRNNV2[T=DT_FLOAT, direction="unidirectional", dropout=0, input_mode="linear_input", is_training=true, rnn_mode="lstm", seed=0, seed2=0]
    All kernels registered for op CudnnRNNV2:
      device='GPU'; T in [DT_DOUBLE]
      device='GPU'; T in [DT_FLOAT]
      device='GPU'; T in [DT_HALF]
     [Op:CudnnRNNV2]
    
    opened by yuanqm55 0
  • Incomprehension regarding data processing

    Incomprehension regarding data processing

    Hello,

    I have a few questions regarding the way you process the data.

    1. In your code you seem to use nrPDB-GO_2019.06.18_train.txt and nrPDB-GO_2020.06.18_annot.tsv to build the training data, but in your data you only have nrPDB-GO_2019.06.18_annot.tsv, is it normal ?

    2. I analyzed your results file (DeepCNN-MERGED_molecular_function_results.pckl, DeepCNN-MERGED_cellular_component_results.pckl), and the size of the test set is the same depending on the ontologies. However, in your Supplementary table, you say that the size of the test set differ between MF, BP, CC. Why ?

    3. In your Supplementary Table, the train/val/test set have different sizes depending on MF, BP, CC. Shouldn't they have the same size ?

    opened by PBordesInstadeep 0
Releases(v1.0.0)
  • v1.0.0(Mar 31, 2021)

    First release of our GCN-based Deep Functional Residue Identification (DeepFRI) algorithm for protein function prediction. We have provided command line scripts on how to:

    1. pretrain the models
    2. use pretrained model to make predictions
    3. and visualize class activation map predictions
    Source code(tar.gz)
    Source code(zip)
Owner
Flatiron Institute
@SimonsFoundation
Flatiron Institute
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (à€šà€¿à€€à¥à€°) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 3, 2023
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and CUHK03.

lan.nguyen2k 77 Jan 3, 2023
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 5, 2023
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

null 20 Dec 30, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 7, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

null 5 Nov 30, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

null 569 Dec 30, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 8, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

null 105 Dec 18, 2022
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

null 143 Dec 24, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

null 30 Jul 14, 2022