CONditionals for Ordinal Regression and classification in PyTorch

Overview

CONDOR pytorch implementation for ordinal regression with deep neural networks.

Continuous Integration License Python 3


Documentation: https://GarrettJenkinson.github.io/condor_pytorch


About

CONDOR, short for CONDitionals for Ordinal Regression, is a method for ordinal regression with deep neural networks, which addresses the rank inconsistency issue of other ordinal regression frameworks.

It is compatible with any state-of-the-art deep neural network architecture, requiring only modification of the output layer, the labels, the loss function.

This repository implements the CONDOR functionality (neural network layer, loss function, and dataset utilities) for convenient use. Examples are provided via the "Tutorials" that can be found on the documentation website at https://GarrettJenkinson.github.io/condor_pytorch.

We also have CONDOR implemented for Tensorflow.


Installation or Docker


You can install the latest stable release of condor_pytorch directly from Python's package index via pip by executing the following code from your command line:

pip install condor-pytorch

We also provide Dockerfile's to help get up and started quickly with condor_pytorch. The cpu image can be built and ran as follows, with tutorial jupyter notebooks built in.

# Create a docker image, only done once
docker build -t cpu_pytorch -f cpu.Dockerfile ./

# run image to serve a jupyter notebook
docker run -it -p 8888:8888 --rm cpu_pytorch

# how to run bash inside container (with python that will have deps)
docker run -u $(id -u):$(id -g) -it -p 8888:8888 --rm cpu_pytorch bash

An NVIDIA based gpu optimized container can be built and run as follows (without interactive ipynb capabilities).

# only needs to be built once
docker build -t gpu_pytorch -f gpu.Dockerfile ./

# use the image after building it
docker run -it -p 8888:8888 --rm gpu_pytorch

Cite as

If you use CONDOR as part of your workflow in a scientific publication, please consider citing the CONDOR repository with the following DOI:

@article{condor2021,
title = "Universally rank consistent ordinal regression in neural networks",
journal = "arXiv",
volume = "2110.07470",
year = "2021",
url = "https://arxiv.org/abs/2110.07470",
author = "Garrett Jenkinson and Kia Khezeli and Gavin R. Oliver and John Kalantari and Eric W. Klee",
keywords = "Deep learning, Ordinal regression, neural networks, Machine learning, Biometrics"
}
You might also like...
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Code for
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

A very short and easy implementation of Quantile Regression DQN
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least complexity possible

Comments
  • src edits

    src edits

    Summary of edits:

    • added device as an argument of the functions to make them compatible when GPUs are used.
    • replaced torch.tile with repeat as it is unavailable in some versions of PyTorch.
    • worked with log probabilities and cumulative sum instead of product for numerical stability of ordinal_softmax
    opened by kolmogorov01 0
Releases(v1.1.0)
Owner
null
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 8, 2023
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 4, 2023
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 5.7k Feb 12, 2021
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

null 0 Jan 23, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 1, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

null 195 Dec 7, 2022