get a graph for some city
G = ox.graph_from_place('Piedmont, California, USA', network_type='drive')
fig, ax = ox.plot_graph(G)
Installed per instructions on Mac OS. Terminal output and error output follow.
Any direction would be appreciated.
Thanks,
Jay
Output from terminal looks good except the last line (notebook not trusted):
Posting to http://overpass-api.de/api/interpreter with timeout=180, "{'data': '[out:json][timeout:180];(way["highway"]["area"!~"yes"]["highway"!~"cycleway|footway|path|pedestrian|steps|track|corridor|elevator|escalator|proposed|construction|bridleway|abandoned|platform|raceway|service"]["motor_vehicle"!~"no"]["motorcar"!~"no"]["access"!~"private"]["service"!~"parking|parking_aisle|driveway|private|emergency_access"](poly:"37.823113 -122.255010 37.823199 -122.255027 37.823651 -122.255055 37.824104 -122.255026 37.824552 -122.254940 37.824991 -122.254797 37.825417 -122.254600 37.825824 -122.254350 37.826210 -122.254049 37.826569 -122.253701 37.826799 -122.253455 37.826915 -122.253330 37.827176 -122.253244 37.827377 -122.253178 37.827800 -122.253010 37.828208 -122.252791 37.828597 -122.252523 37.828964 -122.252207 37.829303 -122.251848 37.829613 -122.251448 37.829891 -122.251012 37.830143 -122.250573 37.830803 -122.249429 37.830839 -122.249407 37.831197 -122.249128 37.831286 -122.249052 37.832123 -122.248407 37.832393 -122.248200 37.832408 -122.248188 37.832448 -122.248157 37.832806 -122.247849 37.833139 -122.247498 37.833444 -122.247109 37.833717 -122.246685 37.833957 -122.246229 37.834162 -122.245747 37.834328 -122.245241 37.834455 -122.244718 37.834542 -122.244183 37.834587 -122.243639 37.834589 -122.243372 37.834678 -122.243039 37.834731 -122.242827 37.834764 -122.242685 37.834890 -122.241972 37.834909 -122.241820 37.834955 -122.241306 37.834963 -122.241152 37.834972 -122.240864 37.834984 -122.239854 37.834988 -122.239743 37.835013 -122.239561 37.835040 -122.239289 37.835061 -122.239227 37.835189 -122.238722 37.835278 -122.238205 37.835314 -122.237839 37.835348 -122.237717 37.835448 -122.237227 37.835481 -122.237028 37.835520 -122.236796 37.835555 -122.236603 37.835691 -122.235869 37.835737 -122.235620 37.835738 -122.235611 37.835971 -122.234342 37.836041 -122.233967 37.836454 -122.232630 37.836562 -122.232282 37.836840 -122.231384 37.837223 -122.230148 37.837363 -122.229621 37.837462 -122.229079 37.837518 -122.228527 37.837531 -122.227970 37.837501 -122.227415 37.837429 -122.226866 37.837313 -122.226329 37.837157 -122.225809 37.836961 -122.225310 37.836727 -122.224838 37.836458 -122.224397 37.836321 -122.224194 37.835909 -122.223581 37.835902 -122.223571 37.835860 -122.223509 37.835655 -122.223085 37.835595 -122.222985 37.835586 -122.222968 37.835578 -122.222952 37.835434 -122.222684 37.835429 -122.222676 37.835381 -122.222587 37.835374 -122.222573 37.835322 -122.222478 37.835298 -122.222434 37.835063 -122.221995 37.835055 -122.221980 37.834974 -122.221830 37.834716 -122.221399 37.834427 -122.221000 37.834110 -122.220638 37.833766 -122.220315 37.833400 -122.220035 37.833015 -122.219801 37.832810 -122.219691 37.832272 -122.219402 37.831977 -122.219183 37.831614 -122.218915 37.830654 -122.218095 37.830647 -122.218088 37.830591 -122.218041 37.830515 -122.217976 37.830496 -122.217959 37.830412 -122.217887 37.830144 -122.217659 37.829807 -122.217396 37.829733 -122.217344 37.829631 -122.217281 37.829503 -122.217182 37.829430 -122.217131 37.828987 -122.216860 37.828701 -122.216709 37.828662 -122.216688 37.828379 -122.216543 37.827516 -122.215453 37.827432 -122.215347 37.827198 -122.215051 37.827190 -122.215041 37.827029 -122.214674 37.826870 -122.214305 37.826798 -122.214155 37.826740 -122.214040 37.826711 -122.213957 37.826644 -122.213786 37.826416 -122.213272 37.826146 -122.212791 37.825839 -122.212347 37.825749 -122.212230 37.825389 -122.211810 37.825007 -122.211454 37.825005 -122.211449 37.824892 -122.211240 37.824758 -122.211006 37.824502 -122.210581 37.823733 -122.209301 37.823648 -122.209175 37.823573 -122.209040 37.823492 -122.208894 37.823215 -122.208389 37.823146 -122.208264 37.823031 -122.208047 37.822619 -122.207266 37.822482 -122.207006 37.822225 -122.206566 37.821937 -122.206159 37.821618 -122.205789 37.821273 -122.205460 37.820904 -122.205174 37.820515 -122.204933 37.820110 -122.204741 37.819692 -122.204599 37.819265 -122.204508 37.818833 -122.204469 37.818400 -122.204482 37.817970 -122.204548 37.817547 -122.204666 37.817135 -122.204834 37.816738 -122.205051 37.816359 -122.205316 37.816002 -122.205625 37.815670 -122.205975 37.815367 -122.206365 37.814959 -122.206941 37.814930 -122.206982 37.814675 -122.207349 37.814481 -122.207381 37.814339 -122.207410 37.814177 -122.207447 37.814030 -122.207484 37.813634 -122.207607 37.813500 -122.207657 37.812918 -122.207931 37.812911 -122.207935 37.812827 -122.207984 37.812691 -122.208066 37.812132 -122.208467 37.811978 -122.208597 37.811966 -122.208603 37.811575 -122.208821 37.811483 -122.208879 37.811239 -122.209045 37.811213 -122.209064 37.811191 -122.209080 37.811159 -122.209104 37.811136 -122.209120 37.810777 -122.209410 37.810730 -122.209452 37.810345 -122.209837 37.810210 -122.209988 37.810035 -122.210195 37.809941 -122.210312 37.809922 -122.210337 37.809674 -122.210537 37.809327 -122.210879 37.809009 -122.211262 37.808722 -122.211682 37.808469 -122.212135 37.808252 -122.212618 37.808073 -122.213125 37.807935 -122.213651 37.807838 -122.214192 37.807783 -122.214742 37.807771 -122.215296 37.807802 -122.215849 37.807875 -122.216396 37.807991 -122.216931 37.808147 -122.217449 37.808240 -122.217718 37.808412 -122.218216 37.808499 -122.218428 37.808535 -122.218647 37.808536 -122.218646 37.808586 -122.218943 37.808619 -122.219109 37.808647 -122.219244 37.808740 -122.219662 37.808776 -122.219850 37.809087 -122.221225 37.809106 -122.221298 37.809181 -122.221649 37.809265 -122.221991 37.809318 -122.222187 37.809322 -122.222205 37.809389 -122.222450 37.809446 -122.222678 37.809566 -122.223440 37.809569 -122.223463 37.809617 -122.223762 37.809705 -122.224211 37.809768 -122.224486 37.809957 -122.225311 37.809961 -122.225329 37.810025 -122.225605 37.810110 -122.225936 37.810180 -122.226181 37.810184 -122.226195 37.810396 -122.226930 37.810412 -122.226982 37.810520 -122.227465 37.810522 -122.227472 37.810980 -122.229494 37.811104 -122.230040 37.811143 -122.230250 37.811185 -122.230460 37.811258 -122.230791 37.811688 -122.232912 37.811690 -122.232921 37.811838 -122.233645 37.812030 -122.234375 37.812098 -122.234585 37.812105 -122.234606 37.812310 -122.235233 37.812335 -122.235308 37.812365 -122.235416 37.812513 -122.235963 37.812569 -122.236157 37.812624 -122.236335 37.812672 -122.236504 37.812695 -122.236590 37.812699 -122.236606 37.812766 -122.236853 37.812871 -122.237407 37.812918 -122.237961 37.812919 -122.237980 37.812939 -122.238210 37.813006 -122.238743 37.813113 -122.239267 37.813198 -122.239611 37.813451 -122.240643 37.813454 -122.240655 37.813499 -122.240838 37.813517 -122.240934 37.813670 -122.241713 37.813721 -122.241973 37.813767 -122.242187 37.813858 -122.242584 37.814131 -122.243775 37.814134 -122.243787 37.814226 -122.244185 37.814278 -122.244395 37.814318 -122.244546 37.814438 -122.244999 37.814453 -122.245050 37.814580 -122.245495 37.814634 -122.245662 37.814641 -122.245685 37.814797 -122.246160 37.814803 -122.246192 37.814849 -122.246421 37.814970 -122.246925 37.815128 -122.247413 37.815321 -122.247881 37.815547 -122.248324 37.815805 -122.248739 37.816092 -122.249121 37.816171 -122.249217 37.816316 -122.249386 37.816481 -122.249570 37.816608 -122.249705 37.816727 -122.249828 37.816858 -122.249983 37.816976 -122.250117 37.817113 -122.250268 37.817343 -122.250506 37.817479 -122.250637 37.818026 -122.251088 37.818110 -122.251147 37.818393 -122.251471 37.818403 -122.251482 37.818668 -122.251851 37.819597 -122.253146 37.819902 -122.253532 37.820234 -122.253880 37.820592 -122.254186 37.820972 -122.254447 37.821369 -122.254661 37.821781 -122.254826 37.822203 -122.254941 37.822633 -122.255004 37.823065 -122.255015 37.823113 -122.255010");>;);out;'}"
Downloaded 792.5KB from overpass-api.de in 8.82 seconds
Saved response to cache file "cache/2e68726eb0121fe5f6f00f39771d3830.json"
Got all network data within polygon from API in 1 request(s) and 9.30 seconds
Creating networkx graph from downloaded OSM data...
Created graph with 5,578 nodes and 10,929 edges in 0.15 seconds
Added edge lengths to graph in 0.09 seconds
Identifying all nodes that lie outside the polygon...
Created r-tree spatial index for 5,578 points in 0.21 seconds
[I 05:13:43.513 NotebookApp] Saving file at /osmnx-examples/notebooks/00-osmnx-features-demo.ipynb
[W 05:13:43.514 NotebookApp] Notebook osmnx-examples/notebooks/00-osmnx-features-demo.ipynb is not trusted
Error output:
TypeError Traceback (most recent call last)
in
1 # get a graph for some city
----> 2 G = ox.graph_from_place('Piedmont, California, USA', network_type='drive')
3 fig, ax = ox.plot_graph(G)
~/anaconda3/envs/ox/lib/python3.8/site-packages/osmnx/core.py in graph_from_place(query, network_type, simplify, retain_all, truncate_by_edge, name, which_result, buffer_dist, timeout, memory, max_query_area_size, clean_periphery, infrastructure, custom_filter)
1443
1444 # create graph using this polygon(s) geometry
-> 1445 G = graph_from_polygon(polygon, network_type=network_type, simplify=simplify,
1446 retain_all=retain_all, truncate_by_edge=truncate_by_edge,
1447 name=name, timeout=timeout, memory=memory,
~/anaconda3/envs/ox/lib/python3.8/site-packages/osmnx/core.py in graph_from_polygon(polygon, network_type, simplify, retain_all, truncate_by_edge, name, timeout, memory, max_query_area_size, clean_periphery, infrastructure, custom_filter)
1324 G_buffered = create_graph(response_jsons, name=name, retain_all=True,
1325 bidirectional=network_type in settings.bidirectional_network_types)
-> 1326 G_buffered = truncate_graph_polygon(G_buffered, polygon_buffered, retain_all=True, truncate_by_edge=truncate_by_edge)
1327
1328 # simplify the graph topology
~/anaconda3/envs/ox/lib/python3.8/site-packages/osmnx/core.py in truncate_graph_polygon(G, polygon, retain_all, truncate_by_edge, quadrat_width, min_num, buffer_amount)
731
732 # find all the nodes in the graph that lie outside the polygon
--> 733 points_within_geometry = intersect_index_quadrats(gdf_nodes, polygon, quadrat_width=quadrat_width, min_num=min_num, buffer_amount=buffer_amount)
734 nodes_outside_polygon = gdf_nodes[~gdf_nodes.index.isin(points_within_geometry.index)]
735
~/anaconda3/envs/ox/lib/python3.8/site-packages/osmnx/core.py in intersect_index_quadrats(gdf, geometry, quadrat_width, min_num, buffer_amount)
678 # drop duplicate points, if buffered poly caused an overlap on point(s)
679 # that lay directly on a quadrat line
--> 680 points_within_geometry = points_within_geometry.drop_duplicates(subset='node')
681 else:
682 # after simplifying the graph, and given the requested network type,
~/anaconda3/envs/ox/lib/python3.8/site-packages/pandas/core/frame.py in drop_duplicates(self, subset, keep, inplace, ignore_index)
4806
4807 inplace = validate_bool_kwarg(inplace, "inplace")
-> 4808 duplicated = self.duplicated(subset, keep=keep)
4809
4810 if inplace:
~/anaconda3/envs/ox/lib/python3.8/site-packages/pandas/core/frame.py in duplicated(self, subset, keep)
4883
4884 vals = (col.values for name, col in self.items() if name in subset)
-> 4885 labels, shape = map(list, zip(*map(f, vals)))
4886
4887 ids = get_group_index(labels, shape, sort=False, xnull=False)
~/anaconda3/envs/ox/lib/python3.8/site-packages/pandas/core/frame.py in f(vals)
4857
4858 def f(vals):
-> 4859 labels, shape = algorithms.factorize(
4860 vals, size_hint=min(len(self), _SIZE_HINT_LIMIT)
4861 )
~/anaconda3/envs/ox/lib/python3.8/site-packages/pandas/core/algorithms.py in factorize(values, sort, na_sentinel, size_hint)
627 na_value = None
628
--> 629 codes, uniques = _factorize_array(
630 values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value
631 )
~/anaconda3/envs/ox/lib/python3.8/site-packages/pandas/core/algorithms.py in _factorize_array(values, na_sentinel, size_hint, na_value)
476
477 table = hash_klass(size_hint or len(values))
--> 478 uniques, codes = table.factorize(values, na_sentinel=na_sentinel, na_value=na_value)
479
480 codes = ensure_platform_int(codes)
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.factorize()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable._unique()
TypeError: unhashable type: 'dict'