Get started with Machine Learning with Python - An introduction with Python programming examples

Overview

Machine Learning With Python

Get started with Machine Learning with Python

An engaging introduction to Machine Learning with Python

TL;DR

  • Download all Jupyter Notebooks from repo (zip-file-download).
  • Unzip download (main.zip) appropriate place.
  • Launch Ananconda and start JuPyter Notebook (Install it from here if needed)
  • Open the first Notebook from download.
  • Start watching the first video lesson (YouTube).

Machine Learning (ML)

Goal of Course

  • Learn the advantages of ML
  • Master a broad variety of ML techniques
  • Solve problems with ML
  • 15 projects with ML covering:
    • k-Nearest-Neighbors Classifier
    • Linear Classifier
    • Support Vector Classification
    • Linear Regression
    • Reinforcement Learning
    • Unsupervised Learning
    • Neural Networks
    • Deep Neural Networks (DNN)
    • Convolutional Neural Networks (CNN)
    • PyTorch classifier
    • Recurrent Neural Networks (RNN)
    • Natural Language Processing
    • Text Categorization
    • Information Retrieval
    • Information Extraction

Course Structure

  • The course puts you on an exciting journey with Machine Learning (ML) using Python.
    • It will start you off with simple ML concepts to understand and build on top of that
    • Taking you from simple classifier problems towards Deep Neural Networks and complex information extractions
  • The course is structured in 15 sessions, where each session is composed of the following elements
    • Lesson introducing new concepts and building on concepts from previous Lessons
    • Project to try out the new concepts
    • YouTube video explaining and demonstrating the concepts
      • A walkthrough of concepts in Lesson with demonstrating coding examples
      • An introduction of the Project
      • A solution of the project

Are You Good Enough?

Worried about whether you have what it takes to complete this course?

  • Do you have the necessary programming skills?
  • Mathematics and statistics?
  • Are you smart enough?

What level of Python is needed?

What about mathematics and statistics?

  • Fortunately, when it comes to the complex math and statistics behind the Machine Learning models, you do not need to understand that part.
  • All you need is to know how they work and can be used.
    • It's like driving a car. You do not have to be a car mechanic to drive it - yes, it helps you understand the basic knowledge of an engine and what the engine does.
    • Using Machine Learning models is like driving a car - you can get from A to B without being a car mechanic.

Still worried?

  • A lot of people consider me a smart guy - well, the truth is, I'm not
    • I just spend the hours learning it - I have no special talent
  • In the end, it all depends on whether you are willing to spend the hours
  • Yes, you can focus your efforts and succeed faster
    • How?
    • Well, structure it with focus and work on it consistently.
    • Structure your learning - many people try to do it all at once and fail - stay focused on one thing and learn well.
    • Yes, structure is the key to your success.

Any questions?

  • I try to answer most questions. Feel free to contact me.
You might also like...
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of this course are Prof. Bo An, Prof. Yu Han, and Dr. Melvin Chen.

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Pre-trained model, code, and materials from the paper
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Install alphafold on the local machine, get out of docker.
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Owner
Learn Python with Rune
Learn Python with Rune
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 9, 2023
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit ?? Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video ?? Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts ??‍♂️ What's this? ??‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022