Lightweight (Bayesian) Media Mix Model
This is not an official Google product.
LightweightMMM
It is built in python3 and makes use of Numpyro and JAX.
What you can do with LightweightMMM
- Scale you data for training.
- Easily train your media mix model.
- Evaluate your model.
- Learn about your media attribution and ROI per media channel.
- Optimize your budget allocation.
Installation
The recommended way of installing lightweight_mmm is through PyPi:
pip install lightweight_mmm
If you want to use the most recent and slightly less stable version you can install it from github:
pip install --upgrade git+https://github.com/google/lightweight_mmm.git
The models
For larger countries we recommend a geo-based model, this is not implemented yet.
We estimate a national weekly model where we use sales revenue (y) as the KPI.
$$\mu_t = a + trend_t + seasonality_t + \beta_m sat(lag(X_{mt}, \phi_m), \theta_m) + \beta_o X_{ot}$$
$$y_t \sim N(\mu_t, \sigma^2)$$
$$\sigma \sim \Gamma(1, 1)$$
$$\beta_m \sim N^+(0, \sigma_m^2)$$
$$X_m$$ is a media matrix and $$X_o$$ is a matrix of other exogenous variables.
Seasonality is a latent sinusoidal parameter with a repeating pattern.
Media parameter $$\beta_m$$ is informed by costs. It uses a HalfNormal distribution and the scale of the distribution is the total cost of each media channel.
$$sat()$$ is a saturation function and $$lag()$$ is a lagging function, eg Adstock. They have parameters $$\theta$$ and $$\phi$$ respectively.
We have three different versions of the MMM with different lagging and saturation and we recommend you compare all three models. The Adstock and carryover models have an exponent for diminishing returns. The Hill functions covers that functionality for the Hill-Adstock model.
- Adstock: Applies an infinite lag that decreases its weight as time passes.
- Hill-Adstock: Applies a sigmoid like function for diminishing returns to the output of the adstock function.
- Carryover: Applies a causal convolution giving more weight to the near values than distant ones.
Scaling
Scaling is a bit of an art, Bayesian techniques work well if the input data is small scale. We should not center variables at 0. Sales and media should have a lower bound of 0.
y
can be scaled as $$y / mean_y$$.media
can be scaled as $$X_m / mean_X$$, which means the new column mean will be 1.
Optimization
For optimization we will maximize the sales changing the media inputs such that the summed cost of the media is constant. We can also allow reasonable bounds on each media input (eg +- x%). We only optimise across channels and not over time.
Getting started
Preparing the data
Here we use simulated data but it is assumed you have you data cleaned at this point. The necessary data will be:
- Media data: Containing the metric per channel and time span (eg. impressions per week). Media values must not contain negative values.
- Extra features: Any other features that one might want to add to the analysis. These features need to be known ahead of time for optimization or you would need another model to estimate them.
- Target: Target KPI for the model to predict. This will also be the metric optimized during the optimization phase.
- Costs: The average cost per media unit per channel.
# Let's assume we have the following datasets with the following shapes:
media_data, extra_features, target, unscaled_costs, _ = data_simulation.simulate_all_data(
data_size=120,
n_media_channels=3,
n_extra_features=2)
Scaling is a bit of an art, Bayesian techniques work well if the input data is small scale. We should not center variables at 0. Sales and media should have a lower bound of 0.
We provide a CustomScaler
which can apply multiplications and division scaling in case the wider used scalers don't fit your use case. Scale your data accordingly before fitting the model. Below is an example of usage of this CustomScaler
:
# Simple split of the data based on time.
split_point = data_size - data_size // 10
media_data_train = media_data[:split_point, :]
target_train = target[:split_point]
extra_features_train = extra_features[:split_point, :]
extra_features_test = extra_features[split_point:, :]
# Scale data
media_scaler = preprocessing.CustomScaler(divide_operation=jnp.mean)
extra_features_scaler = preprocessing.CustomScaler(divide_operation=jnp.mean)
target_scaler = preprocessing.CustomScaler(
divide_operation=jnp.mean)
# scale cost up by N since fit() will divide it by number of weeks
cost_scaler = preprocessing.CustomScaler(divide_operation=jnp.mean)
media_data_train = media_scaler.fit_transform(media_data_train)
extra_features_train = extra_features_scaler.fit_transform(
extra_features_train)
target_train = target_scaler.fit_transform(target_train)
costs = cost_scaler.fit_transform(unscaled_costs)
Training the model
The model requires the media data, the extra features, the costs of each media unit per channel and the target. You can also pass how many samples you would like to use as well as the number of chains.
For running multiple chains in parallel the user would need to set numpyro.set_host_device_count
to either the number of chains or the number of CPUs available.
See an example below:
# Fit model.
mmm = lightweight_mmm.LightweightMMM()
mmm.fit(media=media_data,
extra_features=extra_features,
total_costs=costs,
target=target,
number_warmup=1000,
number_samples=1000,
number_chains=2)
Obtaining media effect and ROI
There are two ways of obtaining the media effect and ROI with lightweightMMM
depending on if you scaled the data or not prior to training. If you did not scale your data you can simply call:
mmm.get_posterior_metrics()
However if you scaled your media data, target or both it is important that you provide get_posterior_metrics
with the necessary information to unscale the data and calculate media effect and ROI.
- If only costs were scaled, the following two function calls are equivalent:
# Option 1
mmm.get_posterior_metrics(cost_scaler=cost_scaler)
# Option 2
mmm.get_posterior_metrics(unscaled_costs=unscaled_costs)
- If only the target was scaled:
mmm.get_posterior_metrics(target_scaler=target_scaler)
- If both were scaled:
mmm.get_posterior_metrics(cost_scaler=cost_scaler,
target_scaler=target_scaler)
Running the optimization
For running the optimization one needs the following main parameters:
n_time_periods
: The number of time periods you want to simulate (eg. Optimize for the next 10 weeks if you trained a model on weekly data).- The model that was trained.
- The
budget
you want to allocate for the nextn_time_periods
. - The extra features used for training for the following
n_time_periods
. - Price per media unit per channel.
media_gap
refers to the media data gap between the end of training data and the start of the out of sample media given. Eg. if 100 weeks of data were used for training and prediction starts 2 months after training data finished we need to provide the 8 weeks missing between the training data and the prediction data so data transformations (adstock, carryover, ...) can take place correctly.
See below and example of optimization:
# Run media optimization.
budget = 40
prices = np.array([0.1, 0.11, 0.12])
extra_features_test = extra_features_scaler.transform(extra_features_test)
solution = optimize_media.find_optimal_budgets(
n_time_periods=extra_features_test.shape[0],
media_mix_model=mmm,
budget=budget,
extra_features=extra_features_test,
prices=prices)
Run times
A model with 5 media variables and 1 other variable and 150 weeks, 1500 draws and 2 chains should take 7 mins per chain to estimate (on CPU machine). This excludes compile time.