Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

Overview

fwhr-calc-website

This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure. Used in

Built with

  • Python 3.6
  • Dlib
  • Opencv
  • Flask

Getting started

Prerequisites

  1. python version 3.6 with Anaconda distribution (no guarantee for other versions)
    • You can download Anaconda Individual Edition in [here] (https://www.anaconda.com/products/individual)
    • Check your anaconda installation by conda -V
    • Create a virtual environment by conda create -n [name] python=3.6 and activate the venv by conda activate [name]
  2. Clone this repo.
    • git clone https://github.com/haileypark-kr/fwhr-calc-website.git
  3. Microsoft Azure Face Api Key
    1. Create an Azure account and a Cognitive Service Face API resource in Azure Portal. Read [this] (https://docs.microsoft.com/en-us/azure/cognitive-services/face/) documentation.
    2. Generate keys to access your API. (Resource Management > Keys and Endpoint)
    3. Make a file named azure_faceapi_key.conf and paste the first key in the file. (you can change the file name if you want, but make sure you also change .gitignore and config.py) Do not upload this file to GitHub.
    4. Replace the variable FACE_API_ENDPOINT in config.py with your endpoint.
      # config.py
      
      FACE_API_ENDPOINT = "https://eastasia.api.cognitive.microsoft.com"
      

Installation

Install python libraries in this project's root directory.

  • pip install -r requirements.txt
  • Some libraries (dlib) cannot be installed by pip - should be installed using conda with conda install -y -c conda-forge dlib

Usage

There are two ways to run this application.

  • Running a flask web server: If you want to analyze a few facial images with GUI.
  • Running fWHR calcaculating script: If you want to analyze thousands of images

Running a flask web server

  1. Command: python app.py
  2. Open a Chrome browser and enter 127.0.0.1:5001
  3. Select some images and press Submit button.
  4. Wait and do not reload the browser.
  5. Anlysis result will be downloaded shortly (in xlsx format)

Running fWHR calcaculating script

  1. Command: python fWHR_main.py --dataroot [path to the image directory]
  2. Wait
  3. Go to data/output direcetory and get the analysis result file.
You might also like...
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Get 2D point positions (e.g., facial landmarks) projected on 3D mesh
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

Provided is code that demonstrates the training and evaluation of the work presented in the paper:
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Code to reproduce the results in the paper
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

Owner
SoohyunPark
Soohyun Park. Interests in computer vision and backend
SoohyunPark
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 2, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save <SAVE_NAME> --data <PATH_TO_DATA_DIR> --dataset <DATASET> --model <model_name> [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

null 6 Oct 28, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 3, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 8, 2021
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

null 4 Apr 10, 2022