TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Overview

Decoupled Low-light Image Enhancement

Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2

1Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education, Hefei 230009, China

2School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China


TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement".

This paper has been accepted in the ACM Transactions on Multimedia Computing, Communications, and Applications

1 Abstract

The visual quality of photographs taken under imperfect lightness conditions can be degenerated by multiple factors, e.g., low lightness, imaging noise, color distortion and so on. Current low-light image enhancement models focus on the improvement of low lightness only, or simply deal with all the degeneration factors as a whole, therefore leading to a sub-optimal performance. In this paper, we propose to decouple the enhancement model into two sequential stages. The first stage focuses on improving the scene visibility based on a pixel-wise non-linear mapping. The second stage focuses on improving the appearance fidelity by suppressing the rest degeneration factors. The decoupled model facilitates the enhancement in two aspects. On the one hand, the whole low-light enhancement can be divided into two easier subtasks. The first one only aims to enhance the visibility. It also helps to bridge the large intensity gap between the low-light and normal-light images. In this way, the second subtask can be shaped as the local appearance adjustment. On the other hand, since the parameter matrix learned from the first stage is aware of the lightness distribution and the scene structure, it can be incorporated into the second stage as the complementary information. In the experiments, our model demonstrates the state-of-the-art performance in both qualitative and quantitative comparisons, compared with other low-light image enhancement models. In addition, the ablation studies also validate the effectiveness of our model in multiple aspects, such as model structure and loss function.

2 Demo

  • Image 1 image1
  • Image 2 image2
  • Image 3 image3
  • Image 4 image4
  • Image 5 image5

3 Test

Requirements: tf1.8, py3.6, numpy, PIL.

Please download the pre-trained models and test code from Google Drive, and then run python evaluate.py.

Please consider to cite this paper if you find this code helpful for your research:

@misc{hao2021decoupled,
      title={Decoupled Low-light Image Enhancement}, 
      author={Shijie Hao and Xu Han and Yanrong Guo and Meng Wang},
      year={2021},
      eprint={2111.14458},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Code for the paper
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Comments
  • About the license for this model

    About the license for this model

    Thank you for sharing your great code. :smiley_cat:

    What is the license for this model? I'd like to cite it to the repository I'm working on if possible, but I want to post the license correctly.

    https://github.com/PINTO0309/PINTO_model_zoo/tree/main/285_Decoupled-Low-light-Image-Enhancement

    This model performs better than any existing model that I know of.

    • ONNX 180x320

      https://user-images.githubusercontent.com/33194443/163669803-0fad9a3d-5f18-4142-8375-3be2657a16b2.mp4

    • ONNX 360x640 + TensorRT

      https://user-images.githubusercontent.com/33194443/163674615-6e08e2ef-7552-475d-b035-f77662ae00e8.mp4

    opened by PINTO0309 0
  • Need some help

    Need some help

    Can you give me your training code, some details want to see again, especially your loss function, can give me a good implementation of it, thanks a lot!

    opened by Volodymyr233 0
Owner
Image Processing & Deep Learning
null
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 6, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

null 2.6k Jan 4, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 4, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 8, 2022