NLP - Machine learning

Overview

Flipkart-product-reviews

NLP - Machine learning

Visual Studio Code

About


Product reviews is an essential part of an online store like Flipkart’s branding and marketing. They help to build trust and loyalty and typically describe what sets your product apart from others. Savvy shoppers almost never purchase a product without knowing how it’s going to work for them. The more reviews a platform has, the more convinced a user will be that he/she is making the right decision.

Online reviews are very important to e-commerce businesses because they ultimately increase sales by giving the consumers the information they need to make the decision to purchase the product. One other important factor in elevating the reputation, standard, and evaluation of an e-commerce store is product rating.

NLP


Natural Language Processing (NLP) helps machines “read” text by simulating the human ability to understand language. It is a field of Artificial Intelligence that gives machines the ability to read, understand and derive meaning from human languages.

Visual Studio Code

#1 Tokenization


Tokenization is the process of breaking down sentence or paragraphs into smaller chunks of words called tokens.

#2 Stop Words Removal


On removal of some words, the meaning of the sentence doesn't change, like and, am. Those words are called stop-words and should be removed before feeding to any algorithm. In datasets, some non-stop words repeat very frequently. Those words too should be removed to get an unbiased result from the algorithm.

#3 Vectorization


After tokenization, and stop words removal, our "content" are still in string format. We need to convert those strings to numbers based on their importance (features). We use TF-IDF vectorization to convert those text to vector of importance. With TF-IDF we can extract important words in our data. It assign rarely occurring words a high number, and frequently occurring words a very low number.

Topic Modelling - LDA

Visual Studio Code


Topic modeling in python involves counting words and grouping similar word patterns to infer topics within unstructured data. Let’s take the example of Flipkart where you might want to know what customers are saying about a particular product from x seller. Instead of spending hours to find out the best-reviewed product through heaps of feedback, you can analyze them with a topic modeling algorithm.

By detecting patterns such as word frequency and distance between words, a topic model clusters feedback that is similar, and words and expressions that appear most often. With this information, you can quickly deduce what each set of texts are talking about.

There are various topic in modelling algorithms, we will be using the Latent Dirichlet Allocation algorithm(LDA).

You might also like...
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Official Stanford NLP Python Library for Many Human Languages
Official Stanford NLP Python Library for Many Human Languages

Stanza: A Python NLP Library for Many Human Languages The Stanford NLP Group's official Python NLP library. It contains support for running various ac

Owner
Harshith VH
Machine Learning, Deep Learning & Data Science Enthusiast 🚀
Harshith VH
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
NLP, Machine learning

Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members

Harshith VH 6 Jan 12, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing ?? ?? ?? We released the 2.0.0 version with TF2 Support. ?? ?? ?? If you

Eliyar Eziz 2.3k Dec 29, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.1k Feb 14, 2021
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing ?? ?? ?? We released the 2.0.0 version with TF2 Support. ?? ?? ?? If you

Eliyar Eziz 2k Feb 9, 2021
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. OpenPrompt supports loading PLMs directly from huggingface transformers. In the future, we will also support PLMs implemented by other libraries.

THUNLP 2.3k Jan 8, 2023