CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

Overview

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

This repository is the official implementation of CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search.

Introduction

We propose an optimal subgroup selection rule (SSR) that maximizes the number of selected patients, and in the meantime, achieves the pre-specified clinically meaningful mean outcome, such as the average treatment effect. We derive two equivalent theoretical forms of the optimal SSR based on the contrast function that describes the treatment-covariates interaction in the outcome. We further propose a ConstrAined PolIcy Tree seArch aLgorithm (CAPITAL) to find the optimal SSR within the interpretable decision tree class. The proposed method is flexible to handle multiple constraints that penalize the inclusion of patients with negative treatment effect, and to address time to event data using the restricted mean survival time as the clinically interesting mean outcome.

Requirements

  • R 3.6
  • foreach
  • doParallel
  • policytree
  • randomForestSRC
  • survival

Contents

  1. README.txt: implementation details of source code and contents

  2. Source codes of CAPITAL and data generation environment

    a). CAPITAL.R: main function for CAPITAL for Average Treatment Effect with or without Multiple Constraints;

    b). CAPITAL_surv.R: main function for CAPITAL for Survival Data with or without Multiple Constraints;

    c). Ture_Calculation.R: Calculate the true functions and values for Section 5.

You might also like...
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

Locally Constrained Self-Attentive Sequential Recommendation
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

A semismooth Newton method for elliptic PDE-constrained optimization
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

Owner
Hengrui Cai
Hengrui Cai
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 5, 2023
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 6, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely optimal running in ~15s to ~30s for search spaces as big as 10000000 nodes where a set of 18 actions could be performed at each node in the 3D Maze.

null 1 Mar 28, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

null 416 Jan 9, 2023
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

null 35 Jan 3, 2023
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

null 712 Dec 17, 2022