This repository contains PyTorch models for SpecTr (Spectral Transformer).

Related tags

Deep Learning SpecTr
Overview

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation

This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr is a hybrid transformer backbone that can be easily applied to other hyperspectral images. Screenshot_2021-04-08_16-21-28

You might also like...
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

Spectral Tensor Train Parameterization of Deep Learning Layers
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer This repository contains the code and models for the following paper.
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

Comments
  • Cannot find the data using the link.

    Cannot find the data using the link.

    Hello, following is your comment on other questions:

    "You can test your code here,Some of the data is available on Kaggle. The full data set is available for download after registration in official website"

    When I clicked the "official website", I entered into the following website:

    "https://bio-hsi.ecnu.edu.cn/accounts/login/"

    After I registed, I tried to login. However, it shows that the registered account has not been activated. I also checked my e-mail box, there is nothing on activating the new registered account.

    Would you like to tell me if I could activate the account and download the "Microscopic Hyperspectral Choledoch Dataset"? thanks ~

    opened by zhangxuan602461121 1
  • how should I preprocess the data?

    how should I preprocess the data?

    Hello, I read your paper, it looks like we need to resize the input data into 192×192×60, but the model(EncodeTrans_V3DUNet) seems only accept the 5-dimensional input, so I am kind of confused? (1) EncodeTrans_V3DUNet is your proposed method SpecTr, right? (2) what should I preprocess the input hyperspectral image to obtain (b, c, s, w, h), especially the meaning of s? Could you kindly share your ideas?

    opened by GanZhan 4
Owner
Boxiang Yun
Never stop exploring the world
Boxiang Yun
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is established, which is named opensa (openspectrum analysis).

Fu Pengyou 50 Jan 7, 2023
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

null 5 Jan 4, 2023
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 5, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 5, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 4, 2023
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

null 2 Nov 15, 2021
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

null 75 Dec 2, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

null 210 Dec 18, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022