Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Overview

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting

This repository is the official implementation of Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting.

Requirements

Recommended version of OS & Python:

To install python dependencies, virtualenv is recommended, sudo apt install python3.7-venv to install virtualenv for python3.7. All the python dependencies are verified for pip==20.1.1 and setuptools==41.2.0. Run the following commands to create a venv and install python dependencies:

python3.7 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Datasets

PEMS03, PEMS04, PEMS07, PEMS08, METR-LA, PEMS-BAY, Solar, Electricity, ECG5000, COVID-19

We can get the raw data through the links above. We evaluate the performance of traffic flow forecasting on PEMS03, PEMS07, PEMS08 and traffic speed forecasting on PEMS04, PEMS-BAY and METR-LA. So we use the traffic flow table of PEMS03, PEMS07, PEMS08 and the traffic speed table of PEMS04, PEMS-BAY and METR-LA as our datasets. We download the solar power data of Alabama (Eastern States) and merge the 5-minute csv files (totally 137 time series) as our Solar dataset. We delete the header and index of Electricity file downloaded from the link above as our Electricity dataset. For COVID-19 dataset, the raw data is under the folder csse_covid_19_data/csse_covid_19_time_series/ of the above github link. We use time_series_covid19_confirmed_global.csv to calculate the daily number of newly confirmed infected people from 1/22/2020 to 5/10/2020. The 25 countries we take into consideration are 'US','Canada','Mexico','Russia','UK','Italy','Germany','France','Belarus ','Brazil','Peru','Ecuador','Chile','India','Turkey','Saudi Arabia','Pakistan','Iran','Singapore','Qatar','Bangladesh','Arab','China','Japan','Korea'.

The input csv file should contain no header and its shape should be T*N, where T denotes total number of timestamps, N denotes number of nodes.

Since complex data cleansing is needed on the above datasets provided in the urls before fed into the StemGNN model, we provide a cleaned version of ECG5000 (./dataset/ECG_data.csv) for reproduction convenience. The ECG_data.csv is in shape of 5000*140, where 5000 denotes number of timestamps and 140 denotes total number of nodes. Run command python main.py to trigger training and evaluation on ECG_data.csv.

Training and Evaluation

The training procedure and evaluation procedure are all included in the main.py. To train and evaluate on some dataset, run the following command:

python main.py --train True --evaluate True --dataset <name of csv file> --output_dir <path to output directory> --n_route <number of nodes> --window_size <length of sliding window> --horizon <predict horizon> --norm_method z_score --train_length 7 --validate_length 2 --test_length 1

The detailed descriptions about the parameters are as following:

Parameter name Description of parameter
train whether to enable training, default True
evaluate whether to enable evaluation, default True
dataset file name of input csv
window_size length of sliding window, default 12
horizon predict horizon, default 3
train_length length of training data, default 7
validate_length length of validation data, default 2
test_length length of testing data, default 1
epoch epoch size during training
lr learning rate
multi_layer hyper parameter of STemGNN which controls the parameter number of hidden layers, default 5
device device that the code works on, 'cpu' or 'cuda:x'
validate_freq frequency of validation
batch_size batch size
norm_method method for normalization, 'z_score' or 'min_max'
early_stop whether to enable early stop, default False

Table 1 Configurations for all datasets

Dataset train evaluate node_cnt window_size horizon norm_method
METR-LA True True 207 12 3 z_score
PEMS-BAY True True 325 12 3 z_score
PEMS03 True True 358 12 3 z_score
PEMS04 True True 307 12 3 z_score
PEMS07 True True 228 12 3 z_score
PEMS08 True True 170 12 3 z_score
COVID-19 True True 25 28 28 z_score

Results

Our model achieves the following performance on the 10 datasets:

Table 2 (predict horizon: 3 steps)

Dataset MAE RMSE MAPE(%)
METR-LA 2.56 5.06 6.46
PEMS-BAY 1.23 2.48 2.63
PEMS03 14.32 21.64 16.24
PEMS04 20.24 32.15 10.03
PEMS07 2.14 4.01 5.01
PEMS08 15.83 24.93 9.26

Table 3 (predict horizon: 28 steps)

Dataset MAE RMSE MAPE
COVID-19 662.24 1023.19 19.3
You might also like...
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

Comments
  • This repo is missing important files

    This repo is missing important files

    There are important files that Microsoft projects should all have that are not present in this repository. A pull request has been opened to add the missing file(s). When the pr is merged this issue will be closed automatically.

    Microsoft teams can learn more about this effort and share feedback within the open source guidance available internally.

    Merge this pull request

    opened by microsoft-github-policy-service[bot] 1
  • Adding Microsoft SECURITY.MD

    Adding Microsoft SECURITY.MD

    Please accept this contribution adding the standard Microsoft SECURITY.MD :lock: file to help the community understand the security policy and how to safely report security issues. GitHub uses the presence of this file to light-up security reminders and a link to the file. This pull request commits the latest official SECURITY.MD file from https://github.com/microsoft/repo-templates/blob/main/shared/SECURITY.md.

    Microsoft teams can learn more about this effort and share feedback within the open source guidance available internally.

    opened by microsoft-github-policy-service[bot] 0
  • ACTION REQUIRED: Microsoft needs this private repository to complete compliance info

    ACTION REQUIRED: Microsoft needs this private repository to complete compliance info

    There are open compliance tasks that need to be reviewed for your StemGNN repo.

    Action required: 4 compliance tasks

    To bring this repository to the standard required for 2021, we require administrators of this and all Microsoft GitHub repositories to complete a small set of tasks within the next 60 days. This is critical work to ensure the compliance and security of your microsoft GitHub organization.

    Please take a few minutes to complete the tasks at: https://repos.opensource.microsoft.com/orgs/microsoft/repos/StemGNN/compliance

    • The GitHub AE (GitHub inside Microsoft) migration survey has not been completed for this private repository
    • No Service Tree mapping has been set for this repo. If this team does not use Service Tree, they can also opt-out of providing Service Tree data in the Compliance tab.
    • No repository maintainers are set. The Open Source Maintainers are the decision-makers and actionable owners of the repository, irrespective of administrator permission grants on GitHub.
    • Classification of the repository as production/non-production is missing in the Compliance tab.

    You can close this work item once you have completed the compliance tasks, or it will automatically close within a day of taking action.

    If you no longer need this repository, it might be quickest to delete the repo, too.

    GitHub inside Microsoft program information

    More information about GitHub inside Microsoft and the new GitHub AE product can be found at https://aka.ms/gim.

    FYI: current admins at Microsoft include @guinao, @moreOver0, @conhua

    opened by microsoft-github-operations[bot] 0
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 5, 2023
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 5, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 4, 2023
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Ian Covert 130 Jan 1, 2023
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

null 116 Jan 4, 2023
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022