"Improving 3D Object Detection with Channel-wise Transformer"
Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v0.3. Our paper can be downloaded here ICCV2021.
Overview of CT3D. The raw points are first fed into the RPN for generating 3D proposals. Then the raw points along with the corresponding proposals are processed by the channel-wise Transformer composed of the proposal-to-point encoding module and the channel-wise decoding module. Specifically, the proposal-to-point encoding module is to modulate each point feature with global proposal-aware context information. After that, the encoded point features are transformed into an effective proposal feature representation by the channel-wise decoding module for confidence prediction and box regression.
AP@R11 | AP@R40 | Download | |
---|---|---|---|
Only Car | 86.06 | 85.79 | model-car |
3-Category (Car) | 85.04 | 84.97 | model-3cat |
3-Category (Pedestrian) | 56.28 | 55.58 | - |
3-Category (Cyclist) | 71.71 | 71.88 | - |
1. Recommended Environment
- Linux (tested on Ubuntu 16.04)
- Python 3.6+
- PyTorch 1.1 or higher (tested on PyTorch 1.6)
- CUDA 9.0 or higher (PyTorch 1.3+ needs CUDA 9.2+)
2. Set the Environment
pip install -r requirement.txt
python setup.py develop
3. Data Preparation
- Prepare KITTI dataset and road planes
# Download KITTI and organize it into the following form:
├── data
│ ├── kitti
│ │ │── ImageSets
│ │ │── training
│ │ │ ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│ │ │── testing
│ │ │ ├──calib & velodyne & image_2
# Generatedata infos:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml
- Prepare Waymo dataset
# Download Waymo and organize it into the following form:
├── data
│ ├── waymo
│ │ │── ImageSets
│ │ │── raw_data
│ │ │ │── segment-xxxxxxxx.tfrecord
| | | |── ...
| | |── waymo_processed_data
│ │ │ │── segment-xxxxxxxx/
| | | |── ...
│ │ │── pcdet_gt_database_train_sampled_xx/
│ │ │── pcdet_waymo_dbinfos_train_sampled_xx.pkl
# Install tf 2.1.0
# Install the official waymo-open-dataset by running the following command:
pip3 install --upgrade pip
pip3 install waymo-open-dataset-tf-2-1-0 --user
# Extract point cloud data from tfrecord and generate data infos:
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos --cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml
4. Train
- Train with a single GPU
python train.py --cfg_file ${CONFIG_FILE}
# e.g.,
python train.py --cfg_file tools/cfgs/kitti_models/second_ct3d.yaml
- Train with multiple GPUs or multiple machines
bash scripts/dist_train.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
# or
bash scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
# e.g.,
bash scripts/dist_train.sh 8 --cfg_file tools/cfgs/kitti_models/second_ct3d.yaml
5. Test
- Test with a pretrained model:
python test.py --cfg_file ${CONFIG_FILE} --ckpt ${CKPT}
# e.g.,
python test.py --cfg_file tools/cfgs/kitti_models/second_ct3d.yaml --ckpt output/kitti_models/second_ct3d/default/kitti_val.pth