LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Related tags

Deep Learning LQM
Overview

Improving Object Detection by Estimating Bounding Box Quality Accurately

Abstract

Object detection aims to locate and classify object instances in images. Therefore, the object detection model is generally implemented with two parallel branches to optimize localization and classification. After training the detection model, we should select the best bounding box of each class among a number of estimations for reliable inference. Generally, NMS (Non Maximum Suppression) is operated to suppress low-quality bounding boxes by referring to classification scores or center-ness scores. However, since the quality of bounding boxes is not considered, the low-quality bounding boxes can be accidentally selected as a positive bounding box for the corresponding class. We believe that this misalignment between two parallel tasks causes degrading of the object detection performance. In this paper, we propose a method to estimate bounding boxes' quality using four-directional Gaussian quality modeling, which leads the consistent results between two parallel branches. Extensive experiments on the MS COCO benchmark show that the proposed method consistently outperforms the baseline (FCOS). Eventually, our best model offers the state-of-the-art performance by achieving 48.9% in AP. We also confirm the efficiency of the method by comparing the number of parameters and computational overhead.

Overall Architecture

Implementation Details

We implement our detection model on top of MMDetection (v2.6), an open source object detection toolbox. If not specified separately, the default settings of FCOS implementation are not changed. We train and validate our network on four RTX TITAN GPUs in the environment of Pytorch v1.6 and CUDA v10.2.

Please see GETTING_STARTED.md for the basic usage of MMDetection.

Installation


  1. Clone the this repository.

    git clone https://github.com/POSTECH-IMLAB/LQM.git
    cd LQM
  2. Create a conda virtural environment and install dependencies.

    conda env create -f environment.yml
  3. Activate conda environment

    conda activate lqm
  4. Install build requirements and then install MMDetection.

    pip install --force-reinstall mmcv-full==1.1.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.6.0/index.html
    pip install -v -e .

Preparing MS COCO dataset


bash download_coco.sh

Preparing Pre-trained model weights


bash download_weights.sh

Train


# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with COCO dataset in 'data/coco/'

./tools/dist_train.sh configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py 4 --validate

Inference


./tools/dist_test.sh configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py work_dirs/uncertainty_guide_r50_fpn_1x/epoch_12.pth 4 --eval bbox

Image demo using pretrained model weight


# Result will be saved under the demo directory of this project (detection_result.jpg)
# config, checkpoint, source image path are needed (If you need pre-trained weights, you can download them from provided google drive link)
# score threshold is optional

python demo/LQM_image_demo.py --config configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py --checkpoint work_dirs/pretrained/LQM_r50_fpn_1x.pth --img data/coco/test2017/000000011245.jpg --score-thr 0.3

Webcam demo using pretrained model weight


# config, checkpoint path are needed (If you need pre-trained weights, you can download them from provided google drive link)
# score threshold is optional

python demo/webcam_demo.py configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py work_dirs/pretrained/LQM_r50_fpn_1x.pth

Models


For your convenience, we provide the following trained models. All models are trained with 16 images in a mini-batch with 4 GPUs.

Model Multi-scale training AP (minival) Link
LQM_R50_FPN_1x No 40.0 Google
LQM_R101_FPN_2x Yes 44.8 Google
LQM_R101_dcnv2_FPN_2x Yes 47.4 Google
LQM_X101_FPN_2x Yes 47.2 Google
LQM_X101_dcnv2_FPN_2x Yes 48.9 Google
You might also like...
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

 Improving 3D Object Detection with Channel-wise Transformer
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

labelpix is a graphical image labeling interface for drawing bounding boxes
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

Pytorch based library to rank predicted bounding boxes using text/image user's prompts.
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Owner
IM Lab., POSTECH
IM Lab., POSTECH
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, as well as object detection and instance segmentation projects.

null 305 Dec 16, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. The mouth coordinates are found in a more certified way using two independent algorithms. Therefore, the algorithm can be used in more sensitive applications.

iThermAI 4 Nov 27, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 5, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 4, 2023
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 6, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 4, 2023
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 4, 2021