A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

Overview

LegoNet

This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters

Run

python train.py

You could achieve an VGG16 with 93.88% accuracy on CIFAR10 dataset, the lego filters occupy ~3.8M parameters.

LegoConv2d

self.lego = nn.Parameter(nn.init.kaiming_normal_(torch.rand(self.n_lego, self.basic_channels, self.kernel_size, self.kernel_size)))
self.aux_coefficients = nn.Parameter(init.kaiming_normal_(torch.rand(self.n_split, self.out_channels, self.n_lego, 1, 1)))
self.aux_combination = nn.Parameter(init.kaiming_normal_(torch.rand(self.n_split, self.out_channels, self.n_lego, 1, 1)))

lego: Lego Filters

aux_coefficients: combination coefficients used during combination

aux_combination: combination index

Note

The aux_coefficients and aux_combination should be saved as sparse matrix for saving memory. This code does not include this part.

Citation

@inproceedings{legonet,
	title={LegoNet: Efficient Convolutional Neural Networks with Lego Filters},
	author={Yang, Zhaohui and Wang, Yunhe and Liu, Chuanjian and Chen, Hanting and Xu, Chunjing and Shi, Boxin and Xu, Chao and Xu, Chang},
	booktitle={International Conference on Machine Learning},
	pages={7005--7014},
	year={2019}
}
You might also like...
A PyTorch implementation of
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

A PyTorch implementation of
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

A PyTorch implementation of
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

A Pytorch implementation of
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Official PyTorch implementation of
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Pytorch implementation for
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

A PyTorch implementation of SlowFast based on ICCV 2019 paper
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Comments
  • No speedup. Training is slower using Lego filters

    No speedup. Training is slower using Lego filters

    The current given implementation does not provide any speed up in training. The usage of lego filters actually slows down the training process compared to regular convolutional filters. Can you explain why this is happening?

    opened by GiannisPikoulis 0
  • Question about Lego-Res50 implementation

    Question about Lego-Res50 implementation

    Hello. I was wondering whether in your implementation of the Lego version of the ResNet50 which is described in your paper, you just replaced all regular convolutional layers with their Lego counterparts with corresponding kernel sizes (just like in VGG16). Also would it be possible to share your code for implementing LegoNet based on ResNet and MobileNet architectures for reproducibility reasons.

    Thanks in advance.

    opened by GiannisPikoulis 0
Owner
YangZhaohui
PhD candidate at Peking University.
YangZhaohui
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

null 47 Oct 11, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 9, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 9, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 5, 2023
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 2, 2023