QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

Overview

QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

  • TL;DR: QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

QueryInst: Parallelly Supervised Mask Query for Instance Segmentation,

by Yuxin Fang*, Shusheng Yang*, Xinggang Wang†, Yu Li, Chen Fang, Ying Shan, Bin Feng, Wenyu Liu.

(*) equal contribution, (†) corresponding author.

arXiv technical report (arXiv 2105.01928)

QueryInst

  • This repo serves as the official implementation for QueryInst, based on mmdetection and built upon Sparse R-CNN & DETR. Implantations based on Detectron2 will be released in the near future.

  • This project is under active development, we will extend QueryInst to a wide range of instance-level recognition tasks.

Updates

[06/05/2021] 🌟 QueryInst training and inference code has been released!

Getting Started

python setup.py develop
  • Prepare datasets:
mkdir data && cd data
ln -s /path/to/coco coco
  • Training QueryInst with single GPU:
python tools/train.py configs/queryinst/queryinst_r50_fpn_1x_coco.py
  • Training QueryInst with multi GPUs:
./tools/dist_train.sh configs/queryinst/queryinst_r50_fpn_1x_coco.py 8
  • Test QueryInst on COCO val set with single GPU:
python tools/test.py configs/queryinst/queryinst_r50_fpn_1x_coco.py PATH/TO/CKPT.pth --eval bbox segm
  • Test QueryInst on COCO val set with multi GPUs:
./tools/dist_test.sh configs/queryinst/queryinst_r50_fpn_1x_coco.py PATH/TO/CKPT.pth 8 --eval bbox segm

Main Results on COCO val

Configs Aug. Weights Box AP Mask AP
QueryInst_R50_3x_300_queries 480 ~ 800, w/ Crop - 46.9 41.4
QueryInst_R101_3x_300_queries 480 ~ 800, w/ Crop - 48.0 42.4
QueryInst_X101-DCN_3x_300_queries 480 ~ 800, w/ Crop - 50.3 44.2

Citation

If you find our paper and code useful in your research, please consider giving a star and citation ?? :

@article{QueryInst,
  title={QueryInst: Parallelly Supervised Mask Query for Instance Segmentation},
  author={Fang, Yuxin and Yang, Shusheng and Wang, Xinggang and Li, Yu and Fang, Chen and Shan, Ying and Feng, Bin and Liu, Wenyu},
  journal={arXiv preprint arXiv:2105.01928},
  year={2021}
}

TODO

  • QueryInst training and inference code.
  • QueryInst based on Detectron2 toolbox will be released in the near future.
  • QueryInst configurations for Cityscapes and YouTube-VIS.
  • QueryInst pretrain weights.
Comments
  • Question about the overall pipeline of QueryTrack.

    Question about the overall pipeline of QueryTrack.

    Dear author: In Contrastive Tracking Head, the Track_Dynconv utilize the q*t-1 as shown in Equation (4). Why didn‘t it show in Figure 1: Overall pipeline of QueryTrack? There is no arrow connection between them. Thank you!

    opened by kay-Lifeng 7
  • Training Log?

    Training Log?

    Dear authors,

    Do you have training log files available? BTW, I got 3 warnings as shown below when training. I was wondering if you also got them? Is that fine?

    1. queryinst/mmdet/models/backbones/resnet.py:400: UserWarning: DeprecationWarning: pretrained is a deprecated, please use "init_cfg" instead warnings.warn('DeprecationWarning: pretrained is a deprecated

    2. python3.7/site-packages/mmcv/cnn/bricks/conv_module.py:107: UserWarning: ConvModule has norm and bias at the same time warnings.warn('ConvModule has norm and bias at the same time')

    3. [W reducer.cpp:346] Warning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. grad.sizes() = [80, 256, 1, 1], strides() = [256, 1, 256, 256]

    opened by JialianW 7
  • Details about QueryTrack

    Details about QueryTrack

    Thank you for your nice work!

    Since the training code of QueryTrack is not released, I hope you can share the following training details with me:

    1. How is the instance embedding extracted from the reference frame? Is the process the same as that in the target frame? In the target frame, the corresponding embeddings of the ground-truth are extracted through the DynamicConv and HungarianAssigner.
    2. Besides the instance segmentation loss of the target frame, do you also calculate it for the reference frame like CrossVIS?
    3. During inference, the matching factor is changed. Therefore, I wonder if the association process is changed compared to MaskTrackRCNN?

    Thanks again.

    opened by DKWarcher 5
  • Code navigation: queries

    Code navigation: queries

    What variables correspond to queries q_{t-1} and q_t in the main module https://github.com/hustvl/QueryInst/blob/2e8db26965541eff5d290cd10772ed458c71abbc/mmdet/models/roi_heads/query_roi_head.py (if I understand it well)?

    In what variable are q_0they stored? Is it happening in EmbeddingRPNHead?

    Thank you!

    opened by vadimkantorov 5
  • DynamicMaskHead of MMDistributedDataParallel does not matches the length of `CLASSES`  in CocoDataset

    DynamicMaskHead of MMDistributedDataParallel does not matches the length of `CLASSES` in CocoDataset

    While training a custom dataset having 2 coco classes with the config configs/queryinst/queryinst_swin_large_patch4_window7_fpn_300_proposals_crop_mstrain_400-1200_50e_coco.py

    the model shows an error like this - Traceback (most recent call last): File "tools/train.py", line 188, in <module> main() File "tools/train.py", line 184, in main meta=meta) File "/content/QueryInst/mmdet/apis/train.py", line 193, in train_detector runner.run(data_loaders, cfg.workflow) File "/usr/local/lib/python3.7/dist-packages/mmcv/runner/epoch_based_runner.py", line 127, in run epoch_runner(data_loaders[i], **kwargs) File "/usr/local/lib/python3.7/dist-packages/mmcv/runner/epoch_based_runner.py", line 45, in train self.call_hook('before_train_epoch') File "/usr/local/lib/python3.7/dist-packages/mmcv/runner/base_runner.py", line 307, in call_hook getattr(hook, fn_name)(self) File "/content/QueryInst/mmdet/datasets/utils.py", line 155, in before_train_epoch self._check_head(runner) File "/content/QueryInst/mmdet/datasets/utils.py", line 142, in _check_head (f'Thenum_classes({module.num_classes}) in ' AssertionError: Thenum_classes(80) in DynamicMaskHead of MMDistributedDataParallel does not matches the length ofCLASSES2) in CocoDataset

    The environment is google colab with Tesla-K80 GPU enabled at GPU:0

    I've updated the classes in /content/QueryInst/mmdet/datasets/coco.py , /content/QueryInst/mmdet/core/evaluation/class_names.py and also in the base files of the corresponding config file. Please help !!

    opened by sagnik1511 5
  • Ground Truth Not Found

    Ground Truth Not Found

    My command for training ./tools/dist_train.sh configs/queryinst/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py 4

    The training was stucked when model met an empty croped gt. My log is shown as below:

    2021-08-26 10:39:36,940 - mmdet - INFO - workflow: [('train', 1)], max: 36 epochs
    2021-08-26 10:41:30,531 - mmdet - INFO - Epoch [1][50/14659]	lr: 1.249e-06, eta: 13 days, 20:51:37, time: 2.271, data_time: 0.978, memory: 9683, stage0_loss_cls: 2.2784, stage0_pos_acc: 2.0437, stage0_loss_bbox: 2.9789, stage0_loss_iou: 1.6788, stage0_loss_mask: 5.9337, stage1_loss_cls: 2.3385, stage1_pos_acc: 2.0824, stage1_loss_bbox: 4.2721, stage1_loss_iou: 1.8811, stage1_loss_mask: 6.2975, stage2_loss_cls: 2.3301, stage2_pos_acc: 0.9363, stage2_loss_bbox: 2.9707, stage2_loss_iou: 1.9285, stage2_loss_mask: 5.8670, stage3_loss_cls: 2.1712, stage3_pos_acc: 3.0306, stage3_loss_bbox: 3.1920, stage3_loss_iou: 2.2616, stage3_loss_mask: 6.0022, stage4_loss_cls: 2.2627, stage4_pos_acc: 1.7393, stage4_loss_bbox: 2.8403, stage4_loss_iou: 2.3233, stage4_loss_mask: 5.8660, stage5_loss_cls: 2.2882, stage5_pos_acc: 1.5126, stage5_loss_bbox: 2.8825, stage5_loss_iou: 2.3851, stage5_loss_mask: 5.8457, loss: 81.0761, grad_norm: 9063.7358
    2021-08-26 10:42:34,279 - mmdet - INFO - Epoch [1][100/14659]	lr: 2.498e-06, eta: 10 days, 19:53:52, time: 1.276, data_time: 0.029, memory: 9683, stage0_loss_cls: 2.2928, stage0_pos_acc: 2.2991, stage0_loss_bbox: 2.4200, stage0_loss_iou: 1.5812, stage0_loss_mask: 5.5926, stage1_loss_cls: 2.3128, stage1_pos_acc: 1.5530, stage1_loss_bbox: 2.8068, stage1_loss_iou: 1.7299, stage1_loss_mask: 5.6873, stage2_loss_cls: 2.2738, stage2_pos_acc: 1.3359, stage2_loss_bbox: 2.0444, stage2_loss_iou: 1.7757, stage2_loss_mask: 5.1849, stage3_loss_cls: 2.0966, stage3_pos_acc: 3.8337, stage3_loss_bbox: 1.9937, stage3_loss_iou: 1.9307, stage3_loss_mask: 5.0764, stage4_loss_cls: 2.2168, stage4_pos_acc: 2.2209, stage4_loss_bbox: 1.8457, stage4_loss_iou: 1.9443, stage4_loss_mask: 4.9774, stage5_loss_cls: 2.1422, stage5_pos_acc: 2.2032, stage5_loss_bbox: 1.8217, stage5_loss_iou: 1.9223, stage5_loss_mask: 4.9423, loss: 68.6125, grad_norm: 5779.0945
    2021-08-26 10:43:39,684 - mmdet - INFO - Epoch [1][150/14659]	lr: 3.746e-06, eta: 9 days, 21:06:05, time: 1.307, data_time: 0.030, memory: 9683, stage0_loss_cls: 2.1774, stage0_pos_acc: 2.4055, stage0_loss_bbox: 1.7417, stage0_loss_iou: 1.5327, stage0_loss_mask: 5.2476, stage1_loss_cls: 2.1912, stage1_pos_acc: 1.9714, stage1_loss_bbox: 1.5765, stage1_loss_iou: 1.6106, stage1_loss_mask: 4.8875, stage2_loss_cls: 2.1093, stage2_pos_acc: 3.1017, stage2_loss_bbox: 1.4834, stage2_loss_iou: 1.7319, stage2_loss_mask: 4.6163, stage3_loss_cls: 1.9555, stage3_pos_acc: 9.2308, stage3_loss_bbox: 1.4211, stage3_loss_iou: 1.7616, stage3_loss_mask: 4.4452, stage4_loss_cls: 2.0144, stage4_pos_acc: 13.1486, stage4_loss_bbox: 1.3939, stage4_loss_iou: 1.7237, stage4_loss_mask: 4.5496, stage5_loss_cls: 1.9050, stage5_pos_acc: 18.0571, stage5_loss_bbox: 1.4082, stage5_loss_iou: 1.6820, stage5_loss_mask: 4.6783, loss: 59.8446, grad_norm: 2041.8116
    2021-08-26 10:44:43,974 - mmdet - INFO - Epoch [1][200/14659]	lr: 4.995e-06, eta: 9 days, 8:55:17, time: 1.286, data_time: 0.027, memory: 9683, stage0_loss_cls: 2.1020, stage0_pos_acc: 2.5095, stage0_loss_bbox: 1.4044, stage0_loss_iou: 1.4558, stage0_loss_mask: 4.7985, stage1_loss_cls: 2.0902, stage1_pos_acc: 3.7327, stage1_loss_bbox: 1.2853, stage1_loss_iou: 1.5602, stage1_loss_mask: 4.4117, stage2_loss_cls: 1.9464, stage2_pos_acc: 14.1383, stage2_loss_bbox: 1.2960, stage2_loss_iou: 1.5834, stage2_loss_mask: 4.4650, stage3_loss_cls: 1.9040, stage3_pos_acc: 18.7631, stage3_loss_bbox: 1.3171, stage3_loss_iou: 1.5608, stage3_loss_mask: 4.4906, stage4_loss_cls: 1.9529, stage4_pos_acc: 19.2329, stage4_loss_bbox: 1.4226, stage4_loss_iou: 1.6032, stage4_loss_mask: 4.6667, stage5_loss_cls: 1.8324, stage5_pos_acc: 21.7396, stage5_loss_bbox: 1.4392, stage5_loss_iou: 1.6493, stage5_loss_mask: 4.6460, loss: 56.8839, grad_norm: 1372.3742
    2021-08-26 10:45:50,304 - mmdet - INFO - Epoch [1][250/14659]	lr: 6.244e-06, eta: 9 days, 2:47:51, time: 1.327, data_time: 0.028, memory: 9694, stage0_loss_cls: 2.0222, stage0_pos_acc: 5.2418, stage0_loss_bbox: 1.2542, stage0_loss_iou: 1.4832, stage0_loss_mask: 4.7497, stage1_loss_cls: 1.9436, stage1_pos_acc: 10.3808, stage1_loss_bbox: 1.1948, stage1_loss_iou: 1.5693, stage1_loss_mask: 4.5709, stage2_loss_cls: 1.9026, stage2_pos_acc: 18.4786, stage2_loss_bbox: 1.2399, stage2_loss_iou: 1.5680, stage2_loss_mask: 4.6608, stage3_loss_cls: 1.8653, stage3_pos_acc: 21.0621, stage3_loss_bbox: 1.2361, stage3_loss_iou: 1.5910, stage3_loss_mask: 4.5865, stage4_loss_cls: 1.8833, stage4_pos_acc: 22.2822, stage4_loss_bbox: 1.2228, stage4_loss_iou: 1.5849, stage4_loss_mask: 4.6193, stage5_loss_cls: 1.8216, stage5_pos_acc: 20.0130, stage5_loss_bbox: 1.2325, stage5_loss_iou: 1.5996, stage5_loss_mask: 4.6086, loss: 56.0107, grad_norm: 612.7333
    2021-08-26 10:46:54,223 - mmdet - INFO - Epoch [1][300/14659]	lr: 7.493e-06, eta: 8 days, 21:30:13, time: 1.277, data_time: 0.028, memory: 9704, stage0_loss_cls: 1.9121, stage0_pos_acc: 13.8155, stage0_loss_bbox: 1.2645, stage0_loss_iou: 1.4868, stage0_loss_mask: 4.5622, stage1_loss_cls: 1.8526, stage1_pos_acc: 22.7398, stage1_loss_bbox: 1.2319, stage1_loss_iou: 1.5474, stage1_loss_mask: 4.4435, stage2_loss_cls: 1.8383, stage2_pos_acc: 23.9177, stage2_loss_bbox: 1.2318, stage2_loss_iou: 1.5391, stage2_loss_mask: 4.4818, stage3_loss_cls: 1.7926, stage3_pos_acc: 25.6336, stage3_loss_bbox: 1.2685, stage3_loss_iou: 1.5620, stage3_loss_mask: 4.5198, stage4_loss_cls: 1.8395, stage4_pos_acc: 25.4535, stage4_loss_bbox: 1.2195, stage4_loss_iou: 1.5786, stage4_loss_mask: 4.4744, stage5_loss_cls: 1.7601, stage5_pos_acc: 26.6780, stage5_loss_bbox: 1.2468, stage5_loss_iou: 1.5819, stage5_loss_mask: 4.4257, loss: 54.6615, grad_norm: 539.8647
    2021-08-26 10:47:59,050 - mmdet - INFO - Epoch [1][350/14659]	lr: 8.741e-06, eta: 8 days, 18:07:15, time: 1.297, data_time: 0.027, memory: 10247, stage0_loss_cls: 1.8577, stage0_pos_acc: 21.1812, stage0_loss_bbox: 1.1807, stage0_loss_iou: 1.4646, stage0_loss_mask: 4.5113, stage1_loss_cls: 1.8366, stage1_pos_acc: 22.9034, stage1_loss_bbox: 1.1725, stage1_loss_iou: 1.5198, stage1_loss_mask: 4.4354, stage2_loss_cls: 1.8283, stage2_pos_acc: 24.0835, stage2_loss_bbox: 1.1699, stage2_loss_iou: 1.5183, stage2_loss_mask: 4.4518, stage3_loss_cls: 1.7548, stage3_pos_acc: 25.1505, stage3_loss_bbox: 1.1876, stage3_loss_iou: 1.5402, stage3_loss_mask: 4.3562, stage4_loss_cls: 1.7753, stage4_pos_acc: 25.4366, stage4_loss_bbox: 1.1960, stage4_loss_iou: 1.5559, stage4_loss_mask: 4.4155, stage5_loss_cls: 1.7162, stage5_pos_acc: 25.3584, stage5_loss_bbox: 1.1832, stage5_loss_iou: 1.5339, stage5_loss_mask: 4.4058, loss: 53.5674, grad_norm: 324.1903
    2021-08-26 10:49:02,791 - mmdet - INFO - Epoch [1][400/14659]	lr: 9.990e-06, eta: 8 days, 15:11:47, time: 1.276, data_time: 0.029, memory: 10247, stage0_loss_cls: 1.8611, stage0_pos_acc: 25.3944, stage0_loss_bbox: 1.1805, stage0_loss_iou: 1.4688, stage0_loss_mask: 4.4686, stage1_loss_cls: 1.8132, stage1_pos_acc: 24.9371, stage1_loss_bbox: 1.1515, stage1_loss_iou: 1.4919, stage1_loss_mask: 4.3721, stage2_loss_cls: 1.7563, stage2_pos_acc: 27.1302, stage2_loss_bbox: 1.1182, stage2_loss_iou: 1.4570, stage2_loss_mask: 4.3585, stage3_loss_cls: 1.7043, stage3_pos_acc: 28.2956, stage3_loss_bbox: 1.1452, stage3_loss_iou: 1.4661, stage3_loss_mask: 4.3051, stage4_loss_cls: 1.7711, stage4_pos_acc: 28.3810, stage4_loss_bbox: 1.1635, stage4_loss_iou: 1.5052, stage4_loss_mask: 4.2992, stage5_loss_cls: 1.6963, stage5_pos_acc: 27.6587, stage5_loss_bbox: 1.2358, stage5_loss_iou: 1.5787, stage5_loss_mask: 4.3334, loss: 52.7017, grad_norm: 268.2526
    2021-08-26 10:50:07,148 - mmdet - INFO - Epoch [1][450/14659]	lr: 1.124e-05, eta: 8 days, 13:06:45, time: 1.288, data_time: 0.028, memory: 10247, stage0_loss_cls: 1.8659, stage0_pos_acc: 21.0187, stage0_loss_bbox: 1.1456, stage0_loss_iou: 1.4673, stage0_loss_mask: 4.4616, stage1_loss_cls: 1.8124, stage1_pos_acc: 20.8431, stage1_loss_bbox: 1.1410, stage1_loss_iou: 1.5024, stage1_loss_mask: 4.3939, stage2_loss_cls: 1.7415, stage2_pos_acc: 22.2469, stage2_loss_bbox: 1.0791, stage2_loss_iou: 1.4552, stage2_loss_mask: 4.3218, stage3_loss_cls: 1.6844, stage3_pos_acc: 23.0229, stage3_loss_bbox: 1.0540, stage3_loss_iou: 1.4710, stage3_loss_mask: 4.2206, stage4_loss_cls: 1.7414, stage4_pos_acc: 23.0507, stage4_loss_bbox: 1.0820, stage4_loss_iou: 1.4799, stage4_loss_mask: 4.2415, stage5_loss_cls: 1.6787, stage5_pos_acc: 22.9782, stage5_loss_bbox: 1.1479, stage5_loss_iou: 1.5137, stage5_loss_mask: 4.2180, loss: 51.9207, grad_norm: 213.7757
    2021-08-26 10:51:12,068 - mmdet - INFO - Epoch [1][500/14659]	lr: 1.249e-05, eta: 8 days, 11:35:48, time: 1.298, data_time: 0.028, memory: 10247, stage0_loss_cls: 1.8008, stage0_pos_acc: 26.0289, stage0_loss_bbox: 1.1152, stage0_loss_iou: 1.4964, stage0_loss_mask: 4.5369, stage1_loss_cls: 1.7177, stage1_pos_acc: 26.9426, stage1_loss_bbox: 1.0998, stage1_loss_iou: 1.4901, stage1_loss_mask: 4.4598, stage2_loss_cls: 1.6178, stage2_pos_acc: 28.2533, stage2_loss_bbox: 1.0045, stage2_loss_iou: 1.4458, stage2_loss_mask: 4.2719, stage3_loss_cls: 1.5983, stage3_pos_acc: 28.3737, stage3_loss_bbox: 0.9817, stage3_loss_iou: 1.4316, stage3_loss_mask: 4.1732, stage4_loss_cls: 1.6095, stage4_pos_acc: 28.0076, stage4_loss_bbox: 1.0100, stage4_loss_iou: 1.4404, stage4_loss_mask: 4.1736, stage5_loss_cls: 1.5825, stage5_pos_acc: 27.7242, stage5_loss_bbox: 1.0086, stage5_loss_iou: 1.4421, stage5_loss_mask: 4.1600, loss: 50.6682, grad_norm: 161.7756
    2021-08-26 10:52:17,094 - mmdet - INFO - Epoch [1][550/14659]	lr: 1.374e-05, eta: 8 days, 10:22:02, time: 1.299, data_time: 0.031, memory: 10247, stage0_loss_cls: 1.7570, stage0_pos_acc: 26.8588, stage0_loss_bbox: 1.1083, stage0_loss_iou: 1.4725, stage0_loss_mask: 4.3113, stage1_loss_cls: 1.6231, stage1_pos_acc: 28.9210, stage1_loss_bbox: 1.0594, stage1_loss_iou: 1.4476, stage1_loss_mask: 4.2218, stage2_loss_cls: 1.5860, stage2_pos_acc: 28.7443, stage2_loss_bbox: 0.9882, stage2_loss_iou: 1.3822, stage2_loss_mask: 4.0420, stage3_loss_cls: 1.5382, stage3_pos_acc: 29.1749, stage3_loss_bbox: 0.9445, stage3_loss_iou: 1.3533, stage3_loss_mask: 3.9423, stage4_loss_cls: 1.5706, stage4_pos_acc: 29.3126, stage4_loss_bbox: 0.9957, stage4_loss_iou: 1.3977, stage4_loss_mask: 3.9466, stage5_loss_cls: 1.5491, stage5_pos_acc: 30.3116, stage5_loss_bbox: 1.0134, stage5_loss_iou: 1.4122, stage5_loss_mask: 3.9807, loss: 48.6438, grad_norm: 165.5006
    2021-08-26 10:53:22,121 - mmdet - INFO - Epoch [1][600/14659]	lr: 1.499e-05, eta: 8 days, 9:22:05, time: 1.302, data_time: 0.029, memory: 10247, stage0_loss_cls: 1.8014, stage0_pos_acc: 24.0576, stage0_loss_bbox: 1.0937, stage0_loss_iou: 1.4583, stage0_loss_mask: 4.4055, stage1_loss_cls: 1.6502, stage1_pos_acc: 25.7283, stage1_loss_bbox: 1.0336, stage1_loss_iou: 1.4023, stage1_loss_mask: 4.2823, stage2_loss_cls: 1.6193, stage2_pos_acc: 25.9719, stage2_loss_bbox: 0.9329, stage2_loss_iou: 1.3439, stage2_loss_mask: 4.0294, stage3_loss_cls: 1.5818, stage3_pos_acc: 26.1097, stage3_loss_bbox: 0.9050, stage3_loss_iou: 1.3209, stage3_loss_mask: 3.9482, stage4_loss_cls: 1.6150, stage4_pos_acc: 25.8387, stage4_loss_bbox: 0.9309, stage4_loss_iou: 1.3462, stage4_loss_mask: 3.9348, stage5_loss_cls: 1.5781, stage5_pos_acc: 26.1663, stage5_loss_bbox: 0.9603, stage5_loss_iou: 1.3778, stage5_loss_mask: 3.9012, loss: 48.4532, grad_norm: 135.0550
    2021-08-26 10:54:27,236 - mmdet - INFO - Epoch [1][650/14659]	lr: 1.623e-05, eta: 8 days, 8:30:35, time: 1.301, data_time: 0.029, memory: 10247, stage0_loss_cls: 1.7764, stage0_pos_acc: 24.2415, stage0_loss_bbox: 1.0727, stage0_loss_iou: 1.4545, stage0_loss_mask: 4.3936, stage1_loss_cls: 1.6191, stage1_pos_acc: 26.6580, stage1_loss_bbox: 0.9463, stage1_loss_iou: 1.4043, stage1_loss_mask: 4.0678, stage2_loss_cls: 1.5642, stage2_pos_acc: 26.5745, stage2_loss_bbox: 0.8532, stage2_loss_iou: 1.3563, stage2_loss_mask: 3.7875, stage3_loss_cls: 1.5627, stage3_pos_acc: 25.8296, stage3_loss_bbox: 0.8517, stage3_loss_iou: 1.3410, stage3_loss_mask: 3.7530, stage4_loss_cls: 1.5756, stage4_pos_acc: 27.2208, stage4_loss_bbox: 0.8791, stage4_loss_iou: 1.3547, stage4_loss_mask: 3.7740, stage5_loss_cls: 1.5621, stage5_pos_acc: 27.6374, stage5_loss_bbox: 0.8854, stage5_loss_iou: 1.3647, stage5_loss_mask: 3.7638, loss: 46.9637, grad_norm: 121.3612
    2021-08-26 10:55:31,504 - mmdet - INFO - Epoch [1][700/14659]	lr: 1.748e-05, eta: 8 days, 7:37:41, time: 1.287, data_time: 0.026, memory: 10247, stage0_loss_cls: 1.7435, stage0_pos_acc: 26.5202, stage0_loss_bbox: 1.0671, stage0_loss_iou: 1.4283, stage0_loss_mask: 4.2096, stage1_loss_cls: 1.6122, stage1_pos_acc: 26.1169, stage1_loss_bbox: 0.9308, stage1_loss_iou: 1.3396, stage1_loss_mask: 3.8757, stage2_loss_cls: 1.5824, stage2_pos_acc: 28.1921, stage2_loss_bbox: 0.8364, stage2_loss_iou: 1.2766, stage2_loss_mask: 3.7162, stage3_loss_cls: 1.5652, stage3_pos_acc: 27.4108, stage3_loss_bbox: 0.8119, stage3_loss_iou: 1.2662, stage3_loss_mask: 3.6062, stage4_loss_cls: 1.5751, stage4_pos_acc: 28.9362, stage4_loss_bbox: 0.8734, stage4_loss_iou: 1.3164, stage4_loss_mask: 3.6785, stage5_loss_cls: 1.5723, stage5_pos_acc: 29.3925, stage5_loss_bbox: 0.9343, stage5_loss_iou: 1.3846, stage5_loss_mask: 3.6585, loss: 45.8611, grad_norm: 108.1211
    2021-08-26 10:56:35,840 - mmdet - INFO - Epoch [1][750/14659]	lr: 1.873e-05, eta: 8 days, 6:51:16, time: 1.286, data_time: 0.025, memory: 10247, stage0_loss_cls: 1.7365, stage0_pos_acc: 25.9305, stage0_loss_bbox: 1.1240, stage0_loss_iou: 1.4425, stage0_loss_mask: 4.2803, stage1_loss_cls: 1.6124, stage1_pos_acc: 27.2223, stage1_loss_bbox: 0.9277, stage1_loss_iou: 1.3490, stage1_loss_mask: 3.8425, stage2_loss_cls: 1.5820, stage2_pos_acc: 27.2568, stage2_loss_bbox: 0.8401, stage2_loss_iou: 1.2861, stage2_loss_mask: 3.6427, stage3_loss_cls: 1.5647, stage3_pos_acc: 28.4669, stage3_loss_bbox: 0.8065, stage3_loss_iou: 1.2604, stage3_loss_mask: 3.5016, stage4_loss_cls: 1.5462, stage4_pos_acc: 28.9539, stage4_loss_bbox: 0.8224, stage4_loss_iou: 1.2827, stage4_loss_mask: 3.5201, stage5_loss_cls: 1.5790, stage5_pos_acc: 28.0625, stage5_loss_bbox: 0.8625, stage5_loss_iou: 1.2923, stage5_loss_mask: 3.5762, loss: 45.2801, grad_norm: 99.4212
    2021-08-26 10:57:40,493 - mmdet - INFO - Epoch [1][800/14659]	lr: 1.998e-05, eta: 8 days, 6:14:34, time: 1.294, data_time: 0.029, memory: 10247, stage0_loss_cls: 1.7001, stage0_pos_acc: 27.6462, stage0_loss_bbox: 1.0656, stage0_loss_iou: 1.4303, stage0_loss_mask: 4.2057, stage1_loss_cls: 1.5513, stage1_pos_acc: 28.8365, stage1_loss_bbox: 0.8659, stage1_loss_iou: 1.3150, stage1_loss_mask: 3.6463, stage2_loss_cls: 1.5046, stage2_pos_acc: 29.7402, stage2_loss_bbox: 0.7838, stage2_loss_iou: 1.2468, stage2_loss_mask: 3.4932, stage3_loss_cls: 1.4943, stage3_pos_acc: 30.3968, stage3_loss_bbox: 0.7764, stage3_loss_iou: 1.2411, stage3_loss_mask: 3.4376, stage4_loss_cls: 1.4802, stage4_pos_acc: 31.3031, stage4_loss_bbox: 0.8314, stage4_loss_iou: 1.2847, stage4_loss_mask: 3.5074, stage5_loss_cls: 1.4886, stage5_pos_acc: 33.1703, stage5_loss_bbox: 0.8857, stage5_loss_iou: 1.3279, stage5_loss_mask: 3.5649, loss: 44.1290, grad_norm: 99.3313
    2021-08-26 10:58:45,254 - mmdet - INFO - Epoch [1][850/14659]	lr: 2.123e-05, eta: 8 days, 5:42:30, time: 1.295, data_time: 0.028, memory: 10247, stage0_loss_cls: 1.7266, stage0_pos_acc: 25.7188, stage0_loss_bbox: 1.0323, stage0_loss_iou: 1.4061, stage0_loss_mask: 4.1405, stage1_loss_cls: 1.5495, stage1_pos_acc: 26.3889, stage1_loss_bbox: 0.8425, stage1_loss_iou: 1.2886, stage1_loss_mask: 3.5787, stage2_loss_cls: 1.5065, stage2_pos_acc: 28.2313, stage2_loss_bbox: 0.7561, stage2_loss_iou: 1.2177, stage2_loss_mask: 3.4587, stage3_loss_cls: 1.4781, stage3_pos_acc: 29.3448, stage3_loss_bbox: 0.7380, stage3_loss_iou: 1.2051, stage3_loss_mask: 3.3795, stage4_loss_cls: 1.4777, stage4_pos_acc: 29.7030, stage4_loss_bbox: 0.7641, stage4_loss_iou: 1.2305, stage4_loss_mask: 3.4189, stage5_loss_cls: 1.4723, stage5_pos_acc: 30.1511, stage5_loss_bbox: 0.7887, stage5_loss_iou: 1.2514, stage5_loss_mask: 3.3970, loss: 43.1052, grad_norm: 91.7964
    2021-08-26 10:59:50,234 - mmdet - INFO - Epoch [1][900/14659]	lr: 2.248e-05, eta: 8 days, 5:16:40, time: 1.300, data_time: 0.028, memory: 10247, stage0_loss_cls: 1.6663, stage0_pos_acc: 27.5676, stage0_loss_bbox: 1.0314, stage0_loss_iou: 1.3817, stage0_loss_mask: 4.0167, stage1_loss_cls: 1.5113, stage1_pos_acc: 29.0569, stage1_loss_bbox: 0.8031, stage1_loss_iou: 1.2455, stage1_loss_mask: 3.4317, stage2_loss_cls: 1.4575, stage2_pos_acc: 30.5629, stage2_loss_bbox: 0.7264, stage2_loss_iou: 1.1641, stage2_loss_mask: 3.2658, stage3_loss_cls: 1.4436, stage3_pos_acc: 32.9249, stage3_loss_bbox: 0.7004, stage3_loss_iou: 1.1511, stage3_loss_mask: 3.1839, stage4_loss_cls: 1.4497, stage4_pos_acc: 32.7798, stage4_loss_bbox: 0.7274, stage4_loss_iou: 1.1699, stage4_loss_mask: 3.2156, stage5_loss_cls: 1.4516, stage5_pos_acc: 32.8581, stage5_loss_bbox: 0.7502, stage5_loss_iou: 1.1905, stage5_loss_mask: 3.2463, loss: 41.3817, grad_norm: 82.7916
    2021-08-26 11:00:55,297 - mmdet - INFO - Epoch [1][950/14659]	lr: 2.373e-05, eta: 8 days, 4:53:37, time: 1.301, data_time: 0.029, memory: 10247, stage0_loss_cls: 1.6926, stage0_pos_acc: 24.8302, stage0_loss_bbox: 1.0278, stage0_loss_iou: 1.4474, stage0_loss_mask: 4.1217, stage1_loss_cls: 1.5174, stage1_pos_acc: 26.3150, stage1_loss_bbox: 0.7981, stage1_loss_iou: 1.3047, stage1_loss_mask: 3.5163, stage2_loss_cls: 1.4542, stage2_pos_acc: 29.7413, stage2_loss_bbox: 0.6940, stage2_loss_iou: 1.2135, stage2_loss_mask: 3.3908, stage3_loss_cls: 1.4345, stage3_pos_acc: 30.6539, stage3_loss_bbox: 0.6771, stage3_loss_iou: 1.1896, stage3_loss_mask: 3.3288, stage4_loss_cls: 1.4294, stage4_pos_acc: 31.8011, stage4_loss_bbox: 0.6830, stage4_loss_iou: 1.1847, stage4_loss_mask: 3.3438, stage5_loss_cls: 1.4342, stage5_pos_acc: 30.7768, stage5_loss_bbox: 0.6908, stage5_loss_iou: 1.1846, stage5_loss_mask: 3.3271, loss: 42.0862, grad_norm: 80.4314
    2021-08-26 11:01:59,821 - mmdet - INFO - Exp name: queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
    2021-08-26 11:01:59,821 - mmdet - INFO - Epoch [1][1000/14659]	lr: 2.498e-05, eta: 8 days, 4:28:13, time: 1.290, data_time: 0.029, memory: 10247, stage0_loss_cls: 1.7185, stage0_pos_acc: 23.4859, stage0_loss_bbox: 1.0140, stage0_loss_iou: 1.3786, stage0_loss_mask: 3.8208, stage1_loss_cls: 1.5292, stage1_pos_acc: 27.5284, stage1_loss_bbox: 0.8249, stage1_loss_iou: 1.2268, stage1_loss_mask: 3.2860, stage2_loss_cls: 1.4810, stage2_pos_acc: 28.5340, stage2_loss_bbox: 0.7470, stage2_loss_iou: 1.1554, stage2_loss_mask: 3.1576, stage3_loss_cls: 1.4664, stage3_pos_acc: 31.6244, stage3_loss_bbox: 0.7178, stage3_loss_iou: 1.1216, stage3_loss_mask: 3.0968, stage4_loss_cls: 1.4632, stage4_pos_acc: 31.3865, stage4_loss_bbox: 0.7182, stage4_loss_iou: 1.1125, stage4_loss_mask: 3.1103, stage5_loss_cls: 1.4789, stage5_pos_acc: 31.1255, stage5_loss_bbox: 0.7303, stage5_loss_iou: 1.1205, stage5_loss_mask: 3.1161, loss: 40.5925, grad_norm: 91.0885
    2021-08-26 11:03:05,687 - mmdet - INFO - Epoch [1][1050/14659]	lr: 2.500e-05, eta: 8 days, 4:16:47, time: 1.318, data_time: 0.028, memory: 10260, stage0_loss_cls: 1.6991, stage0_pos_acc: 26.2447, stage0_loss_bbox: 1.0155, stage0_loss_iou: 1.4066, stage0_loss_mask: 3.8848, stage1_loss_cls: 1.4980, stage1_pos_acc: 27.5659, stage1_loss_bbox: 0.7647, stage1_loss_iou: 1.2471, stage1_loss_mask: 3.2741, stage2_loss_cls: 1.4364, stage2_pos_acc: 29.7703, stage2_loss_bbox: 0.6777, stage2_loss_iou: 1.1569, stage2_loss_mask: 3.1341, stage3_loss_cls: 1.4320, stage3_pos_acc: 30.3810, stage3_loss_bbox: 0.6392, stage3_loss_iou: 1.1158, stage3_loss_mask: 3.0552, stage4_loss_cls: 1.4235, stage4_pos_acc: 30.6780, stage4_loss_bbox: 0.6377, stage4_loss_iou: 1.1067, stage4_loss_mask: 3.0394, stage5_loss_cls: 1.4280, stage5_pos_acc: 30.8946, stage5_loss_bbox: 0.6443, stage5_loss_iou: 1.1061, stage5_loss_mask: 3.0546, loss: 39.8778, grad_norm: 81.4806
    2021-08-26 11:04:09,375 - mmdet - INFO - Epoch [1][1100/14659]	lr: 2.500e-05, eta: 8 days, 3:48:30, time: 1.274, data_time: 0.026, memory: 10260, stage0_loss_cls: 1.6987, stage0_pos_acc: 23.8894, stage0_loss_bbox: 1.0367, stage0_loss_iou: 1.3789, stage0_loss_mask: 3.7901, stage1_loss_cls: 1.4886, stage1_pos_acc: 28.3727, stage1_loss_bbox: 0.7877, stage1_loss_iou: 1.2206, stage1_loss_mask: 3.2159, stage2_loss_cls: 1.4322, stage2_pos_acc: 30.4321, stage2_loss_bbox: 0.6857, stage2_loss_iou: 1.1131, stage2_loss_mask: 3.1053, stage3_loss_cls: 1.4224, stage3_pos_acc: 32.5551, stage3_loss_bbox: 0.6554, stage3_loss_iou: 1.0726, stage3_loss_mask: 3.0383, stage4_loss_cls: 1.4080, stage4_pos_acc: 33.1763, stage4_loss_bbox: 0.6439, stage4_loss_iou: 1.0641, stage4_loss_mask: 3.0504, stage5_loss_cls: 1.4335, stage5_pos_acc: 32.6161, stage5_loss_bbox: 0.6368, stage5_loss_iou: 1.0557, stage5_loss_mask: 3.0440, loss: 39.4782, grad_norm: 78.5361
    2021-08-26 11:05:14,090 - mmdet - INFO - Epoch [1][1150/14659]	lr: 2.500e-05, eta: 8 days, 3:30:28, time: 1.294, data_time: 0.029, memory: 10260, stage0_loss_cls: 1.6715, stage0_pos_acc: 27.3082, stage0_loss_bbox: 1.0007, stage0_loss_iou: 1.4006, stage0_loss_mask: 3.7686, stage1_loss_cls: 1.4621, stage1_pos_acc: 29.3495, stage1_loss_bbox: 0.7468, stage1_loss_iou: 1.2150, stage1_loss_mask: 3.1715, stage2_loss_cls: 1.4031, stage2_pos_acc: 32.7003, stage2_loss_bbox: 0.6451, stage2_loss_iou: 1.1141, stage2_loss_mask: 2.9907, stage3_loss_cls: 1.3903, stage3_pos_acc: 34.3246, stage3_loss_bbox: 0.6216, stage3_loss_iou: 1.0744, stage3_loss_mask: 2.9547, stage4_loss_cls: 1.3798, stage4_pos_acc: 34.3448, stage4_loss_bbox: 0.6325, stage4_loss_iou: 1.0721, stage4_loss_mask: 2.9729, stage5_loss_cls: 1.4005, stage5_pos_acc: 33.8655, stage5_loss_bbox: 0.6101, stage5_loss_iou: 1.0476, stage5_loss_mask: 2.9774, loss: 38.7239, grad_norm: 78.3448
    2021-08-26 11:06:18,885 - mmdet - INFO - Epoch [1][1200/14659]	lr: 2.500e-05, eta: 8 days, 3:14:17, time: 1.295, data_time: 0.024, memory: 10260, stage0_loss_cls: 1.6741, stage0_pos_acc: 26.5082, stage0_loss_bbox: 1.0016, stage0_loss_iou: 1.3997, stage0_loss_mask: 3.8476, stage1_loss_cls: 1.4358, stage1_pos_acc: 29.2393, stage1_loss_bbox: 0.7487, stage1_loss_iou: 1.2229, stage1_loss_mask: 3.2792, stage2_loss_cls: 1.3819, stage2_pos_acc: 30.4406, stage2_loss_bbox: 0.6568, stage2_loss_iou: 1.1234, stage2_loss_mask: 3.1402, stage3_loss_cls: 1.3637, stage3_pos_acc: 33.2124, stage3_loss_bbox: 0.6305, stage3_loss_iou: 1.0950, stage3_loss_mask: 3.1075, stage4_loss_cls: 1.3658, stage4_pos_acc: 32.1867, stage4_loss_bbox: 0.6289, stage4_loss_iou: 1.0902, stage4_loss_mask: 3.0865, stage5_loss_cls: 1.3765, stage5_pos_acc: 33.1551, stage5_loss_bbox: 0.6318, stage5_loss_iou: 1.1011, stage5_loss_mask: 3.1301, loss: 39.5195, grad_norm: 76.9653
    2021-08-26 11:07:25,167 - mmdet - INFO - Epoch [1][1250/14659]	lr: 2.500e-05, eta: 8 days, 3:10:12, time: 1.326, data_time: 0.035, memory: 10260, stage0_loss_cls: 1.6800, stage0_pos_acc: 25.1354, stage0_loss_bbox: 0.9629, stage0_loss_iou: 1.3814, stage0_loss_mask: 3.5957, stage1_loss_cls: 1.4227, stage1_pos_acc: 28.0095, stage1_loss_bbox: 0.7004, stage1_loss_iou: 1.1653, stage1_loss_mask: 3.0698, stage2_loss_cls: 1.3556, stage2_pos_acc: 31.2645, stage2_loss_bbox: 0.6103, stage2_loss_iou: 1.0676, stage2_loss_mask: 2.9250, stage3_loss_cls: 1.3398, stage3_pos_acc: 33.5218, stage3_loss_bbox: 0.5740, stage3_loss_iou: 1.0287, stage3_loss_mask: 2.8877, stage4_loss_cls: 1.3407, stage4_pos_acc: 34.1780, stage4_loss_bbox: 0.5645, stage4_loss_iou: 1.0191, stage4_loss_mask: 2.8721, stage5_loss_cls: 1.3556, stage5_pos_acc: 33.6427, stage5_loss_bbox: 0.5609, stage5_loss_iou: 1.0110, stage5_loss_mask: 2.8753, loss: 37.3662, grad_norm: 75.3087
    2021-08-26 11:08:30,769 - mmdet - INFO - Epoch [1][1300/14659]	lr: 2.500e-05, eta: 8 days, 3:01:29, time: 1.312, data_time: 0.031, memory: 10260, stage0_loss_cls: 1.6479, stage0_pos_acc: 28.9296, stage0_loss_bbox: 0.9668, stage0_loss_iou: 1.4114, stage0_loss_mask: 3.8106, stage1_loss_cls: 1.3825, stage1_pos_acc: 32.6764, stage1_loss_bbox: 0.6959, stage1_loss_iou: 1.2048, stage1_loss_mask: 3.2734, stage2_loss_cls: 1.3125, stage2_pos_acc: 35.9537, stage2_loss_bbox: 0.6092, stage2_loss_iou: 1.1096, stage2_loss_mask: 3.1411, stage3_loss_cls: 1.3076, stage3_pos_acc: 37.4952, stage3_loss_bbox: 0.5831, stage3_loss_iou: 1.0698, stage3_loss_mask: 3.0958, stage4_loss_cls: 1.2939, stage4_pos_acc: 38.1969, stage4_loss_bbox: 0.5723, stage4_loss_iou: 1.0563, stage4_loss_mask: 3.0967, stage5_loss_cls: 1.3119, stage5_pos_acc: 37.5753, stage5_loss_bbox: 0.5783, stage5_loss_iou: 1.0544, stage5_loss_mask: 3.1193, loss: 38.7049, grad_norm: 69.7411
    2021-08-26 11:09:37,150 - mmdet - INFO - Epoch [1][1350/14659]	lr: 2.500e-05, eta: 8 days, 2:58:17, time: 1.327, data_time: 0.031, memory: 10260, stage0_loss_cls: 1.6179, stage0_pos_acc: 29.8083, stage0_loss_bbox: 0.9617, stage0_loss_iou: 1.4000, stage0_loss_mask: 3.6221, stage1_loss_cls: 1.3624, stage1_pos_acc: 32.9784, stage1_loss_bbox: 0.7101, stage1_loss_iou: 1.1954, stage1_loss_mask: 3.0473, stage2_loss_cls: 1.3282, stage2_pos_acc: 34.8804, stage2_loss_bbox: 0.6097, stage2_loss_iou: 1.0835, stage2_loss_mask: 2.9072, stage3_loss_cls: 1.3201, stage3_pos_acc: 36.4125, stage3_loss_bbox: 0.5731, stage3_loss_iou: 1.0404, stage3_loss_mask: 2.8688, stage4_loss_cls: 1.3002, stage4_pos_acc: 37.3596, stage4_loss_bbox: 0.5613, stage4_loss_iou: 1.0244, stage4_loss_mask: 2.8589, stage5_loss_cls: 1.3196, stage5_pos_acc: 37.2872, stage5_loss_bbox: 0.5531, stage5_loss_iou: 1.0206, stage5_loss_mask: 2.8500, loss: 37.1359, grad_norm: 74.0133
    2021-08-26 11:10:42,106 - mmdet - INFO - Epoch [1][1400/14659]	lr: 2.500e-05, eta: 8 days, 2:46:29, time: 1.299, data_time: 0.027, memory: 10260, stage0_loss_cls: 1.6639, stage0_pos_acc: 24.5354, stage0_loss_bbox: 0.9730, stage0_loss_iou: 1.3973, stage0_loss_mask: 3.6086, stage1_loss_cls: 1.4075, stage1_pos_acc: 27.8628, stage1_loss_bbox: 0.7055, stage1_loss_iou: 1.1755, stage1_loss_mask: 3.0696, stage2_loss_cls: 1.3575, stage2_pos_acc: 31.3315, stage2_loss_bbox: 0.6009, stage2_loss_iou: 1.0746, stage2_loss_mask: 2.9750, stage3_loss_cls: 1.3346, stage3_pos_acc: 35.5107, stage3_loss_bbox: 0.5721, stage3_loss_iou: 1.0375, stage3_loss_mask: 2.9445, stage4_loss_cls: 1.3261, stage4_pos_acc: 34.3865, stage4_loss_bbox: 0.5639, stage4_loss_iou: 1.0271, stage4_loss_mask: 2.9395, stage5_loss_cls: 1.3379, stage5_pos_acc: 34.6709, stage5_loss_bbox: 0.5691, stage5_loss_iou: 1.0290, stage5_loss_mask: 2.9497, loss: 37.6400, grad_norm: 71.6296
    2021-08-26 11:11:47,091 - mmdet - INFO - Epoch [1][1450/14659]	lr: 2.500e-05, eta: 8 days, 2:35:03, time: 1.298, data_time: 0.026, memory: 10260, stage0_loss_cls: 1.6694, stage0_pos_acc: 25.8043, stage0_loss_bbox: 0.9478, stage0_loss_iou: 1.3652, stage0_loss_mask: 3.5024, stage1_loss_cls: 1.4135, stage1_pos_acc: 30.3336, stage1_loss_bbox: 0.6791, stage1_loss_iou: 1.1441, stage1_loss_mask: 2.9723, stage2_loss_cls: 1.3526, stage2_pos_acc: 33.2251, stage2_loss_bbox: 0.6031, stage2_loss_iou: 1.0438, stage2_loss_mask: 2.8801, stage3_loss_cls: 1.3430, stage3_pos_acc: 35.2084, stage3_loss_bbox: 0.5677, stage3_loss_iou: 1.0006, stage3_loss_mask: 2.8446, stage4_loss_cls: 1.3277, stage4_pos_acc: 35.9694, stage4_loss_bbox: 0.5671, stage4_loss_iou: 0.9964, stage4_loss_mask: 2.8584, stage5_loss_cls: 1.3488, stage5_pos_acc: 35.4904, stage5_loss_bbox: 0.5653, stage5_loss_iou: 0.9986, stage5_loss_mask: 2.8676, loss: 36.8592, grad_norm: 73.8468
    2021-08-26 11:12:52,427 - mmdet - INFO - Epoch [1][1500/14659]	lr: 2.500e-05, eta: 8 days, 2:27:06, time: 1.308, data_time: 0.028, memory: 10260, stage0_loss_cls: 1.6548, stage0_pos_acc: 25.4055, stage0_loss_bbox: 0.9172, stage0_loss_iou: 1.3403, stage0_loss_mask: 3.5027, stage1_loss_cls: 1.3948, stage1_pos_acc: 30.2240, stage1_loss_bbox: 0.6886, stage1_loss_iou: 1.1475, stage1_loss_mask: 2.9771, stage2_loss_cls: 1.3370, stage2_pos_acc: 33.6155, stage2_loss_bbox: 0.5852, stage2_loss_iou: 1.0394, stage2_loss_mask: 2.8556, stage3_loss_cls: 1.3124, stage3_pos_acc: 37.1978, stage3_loss_bbox: 0.5461, stage3_loss_iou: 0.9921, stage3_loss_mask: 2.8452, stage4_loss_cls: 1.3030, stage4_pos_acc: 38.8616, stage4_loss_bbox: 0.5495, stage4_loss_iou: 0.9866, stage4_loss_mask: 2.8609, stage5_loss_cls: 1.3085, stage5_pos_acc: 38.3760, stage5_loss_bbox: 0.5476, stage5_loss_iou: 0.9827, stage5_loss_mask: 2.8690, loss: 36.5439, grad_norm: 70.3628
    2021-08-26 11:13:57,001 - mmdet - INFO - Epoch [1][1550/14659]	lr: 2.500e-05, eta: 8 days, 2:15:13, time: 1.292, data_time: 0.027, memory: 10260, stage0_loss_cls: 1.6851, stage0_pos_acc: 24.5149, stage0_loss_bbox: 0.9397, stage0_loss_iou: 1.3625, stage0_loss_mask: 3.4770, stage1_loss_cls: 1.4110, stage1_pos_acc: 28.2324, stage1_loss_bbox: 0.6584, stage1_loss_iou: 1.1252, stage1_loss_mask: 2.8640, stage2_loss_cls: 1.3431, stage2_pos_acc: 32.4330, stage2_loss_bbox: 0.5522, stage2_loss_iou: 1.0091, stage2_loss_mask: 2.7325, stage3_loss_cls: 1.3222, stage3_pos_acc: 34.9220, stage3_loss_bbox: 0.5196, stage3_loss_iou: 0.9702, stage3_loss_mask: 2.7097, stage4_loss_cls: 1.3133, stage4_pos_acc: 35.7501, stage4_loss_bbox: 0.5125, stage4_loss_iou: 0.9522, stage4_loss_mask: 2.7075, stage5_loss_cls: 1.3295, stage5_pos_acc: 35.7375, stage5_loss_bbox: 0.5176, stage5_loss_iou: 0.9538, stage5_loss_mask: 2.7439, loss: 35.7117, grad_norm: 72.5540
    2021-08-26 11:15:02,440 - mmdet - INFO - Epoch [1][1600/14659]	lr: 2.500e-05, eta: 8 days, 2:08:33, time: 1.309, data_time: 0.031, memory: 10260, stage0_loss_cls: 1.6480, stage0_pos_acc: 26.2355, stage0_loss_bbox: 0.9417, stage0_loss_iou: 1.3586, stage0_loss_mask: 3.4764, stage1_loss_cls: 1.3551, stage1_pos_acc: 31.0848, stage1_loss_bbox: 0.6607, stage1_loss_iou: 1.1333, stage1_loss_mask: 2.8353, stage2_loss_cls: 1.2772, stage2_pos_acc: 35.2232, stage2_loss_bbox: 0.5610, stage2_loss_iou: 1.0170, stage2_loss_mask: 2.7561, stage3_loss_cls: 1.2661, stage3_pos_acc: 36.9457, stage3_loss_bbox: 0.5299, stage3_loss_iou: 0.9758, stage3_loss_mask: 2.7287, stage4_loss_cls: 1.2547, stage4_pos_acc: 38.4415, stage4_loss_bbox: 0.5165, stage4_loss_iou: 0.9627, stage4_loss_mask: 2.7384, stage5_loss_cls: 1.2716, stage5_pos_acc: 39.2369, stage5_loss_bbox: 0.5176, stage5_loss_iou: 0.9582, stage5_loss_mask: 2.7461, loss: 35.4867, grad_norm: 70.7494
    2021-08-26 11:16:07,147 - mmdet - INFO - Epoch [1][1650/14659]	lr: 2.500e-05, eta: 8 days, 1:58:19, time: 1.294, data_time: 0.027, memory: 10260, stage0_loss_cls: 1.6747, stage0_pos_acc: 25.6228, stage0_loss_bbox: 0.9274, stage0_loss_iou: 1.3638, stage0_loss_mask: 3.3953, stage1_loss_cls: 1.3673, stage1_pos_acc: 29.8191, stage1_loss_bbox: 0.6477, stage1_loss_iou: 1.1207, stage1_loss_mask: 2.8112, stage2_loss_cls: 1.3010, stage2_pos_acc: 33.2384, stage2_loss_bbox: 0.5509, stage2_loss_iou: 1.0006, stage2_loss_mask: 2.6553, stage3_loss_cls: 1.2719, stage3_pos_acc: 36.5612, stage3_loss_bbox: 0.5095, stage3_loss_iou: 0.9532, stage3_loss_mask: 2.6669, stage4_loss_cls: 1.2616, stage4_pos_acc: 38.9800, stage4_loss_bbox: 0.5050, stage4_loss_iou: 0.9380, stage4_loss_mask: 2.6746, stage5_loss_cls: 1.2729, stage5_pos_acc: 38.0502, stage5_loss_bbox: 0.4997, stage5_loss_iou: 0.9334, stage5_loss_mask: 2.6741, loss: 34.9768, grad_norm: 71.5673
    2021-08-26 11:17:11,737 - mmdet - INFO - Epoch [1][1700/14659]	lr: 2.500e-05, eta: 8 days, 1:48:00, time: 1.292, data_time: 0.028, memory: 10260, stage0_loss_cls: 1.6531, stage0_pos_acc: 24.8506, stage0_loss_bbox: 0.9111, stage0_loss_iou: 1.3768, stage0_loss_mask: 3.3537, stage1_loss_cls: 1.3289, stage1_pos_acc: 29.6029, stage1_loss_bbox: 0.6354, stage1_loss_iou: 1.1256, stage1_loss_mask: 2.7265, stage2_loss_cls: 1.2492, stage2_pos_acc: 35.0890, stage2_loss_bbox: 0.5676, stage2_loss_iou: 1.0286, stage2_loss_mask: 2.6394, stage3_loss_cls: 1.2338, stage3_pos_acc: 40.2179, stage3_loss_bbox: 0.5471, stage3_loss_iou: 0.9936, stage3_loss_mask: 2.5983, stage4_loss_cls: 1.2161, stage4_pos_acc: 41.3352, stage4_loss_bbox: 0.5345, stage4_loss_iou: 0.9823, stage4_loss_mask: 2.5976, stage5_loss_cls: 1.2298, stage5_pos_acc: 40.0981, stage5_loss_bbox: 0.5292, stage5_loss_iou: 0.9787, stage5_loss_mask: 2.6037, loss: 34.6408, grad_norm: 74.2182
    2021-08-26 11:18:17,203 - mmdet - INFO - Epoch [1][1750/14659]	lr: 2.500e-05, eta: 8 days, 1:42:19, time: 1.308, data_time: 0.029, memory: 10260, stage0_loss_cls: 1.6493, stage0_pos_acc: 27.4200, stage0_loss_bbox: 0.9352, stage0_loss_iou: 1.3797, stage0_loss_mask: 3.4129, stage1_loss_cls: 1.3249, stage1_pos_acc: 33.7146, stage1_loss_bbox: 0.6363, stage1_loss_iou: 1.1272, stage1_loss_mask: 2.7844, stage2_loss_cls: 1.2501, stage2_pos_acc: 38.5490, stage2_loss_bbox: 0.5377, stage2_loss_iou: 1.0149, stage2_loss_mask: 2.6762, stage3_loss_cls: 1.2411, stage3_pos_acc: 42.5941, stage3_loss_bbox: 0.5090, stage3_loss_iou: 0.9733, stage3_loss_mask: 2.6403, stage4_loss_cls: 1.2254, stage4_pos_acc: 42.4388, stage4_loss_bbox: 0.4923, stage4_loss_iou: 0.9571, stage4_loss_mask: 2.6582, stage5_loss_cls: 1.2398, stage5_pos_acc: 42.0586, stage5_loss_bbox: 0.4944, stage5_loss_iou: 0.9531, stage5_loss_mask: 2.6798, loss: 34.7925, grad_norm: 70.7024
    2021-08-26 11:19:22,128 - mmdet - INFO - Epoch [1][1800/14659]	lr: 2.500e-05, eta: 8 days, 1:34:55, time: 1.300, data_time: 0.030, memory: 10379, stage0_loss_cls: 1.6151, stage0_pos_acc: 28.5230, stage0_loss_bbox: 0.8962, stage0_loss_iou: 1.3379, stage0_loss_mask: 3.3015, stage1_loss_cls: 1.3039, stage1_pos_acc: 33.2951, stage1_loss_bbox: 0.6194, stage1_loss_iou: 1.0892, stage1_loss_mask: 2.7000, stage2_loss_cls: 1.2418, stage2_pos_acc: 38.5387, stage2_loss_bbox: 0.5380, stage2_loss_iou: 0.9809, stage2_loss_mask: 2.5582, stage3_loss_cls: 1.2145, stage3_pos_acc: 42.3104, stage3_loss_bbox: 0.5076, stage3_loss_iou: 0.9360, stage3_loss_mask: 2.5354, stage4_loss_cls: 1.1984, stage4_pos_acc: 43.3533, stage4_loss_bbox: 0.5003, stage4_loss_iou: 0.9203, stage4_loss_mask: 2.5300, stage5_loss_cls: 1.2125, stage5_pos_acc: 42.7439, stage5_loss_bbox: 0.4876, stage5_loss_iou: 0.9110, stage5_loss_mask: 2.5421, loss: 33.6781, grad_norm: 74.8392
    2021-08-26 11:20:26,881 - mmdet - INFO - Epoch [1][1850/14659]	lr: 2.500e-05, eta: 8 days, 1:26:36, time: 1.295, data_time: 0.026, memory: 10379, stage0_loss_cls: 1.6402, stage0_pos_acc: 26.3269, stage0_loss_bbox: 0.9378, stage0_loss_iou: 1.3596, stage0_loss_mask: 3.3698, stage1_loss_cls: 1.3408, stage1_pos_acc: 31.4008, stage1_loss_bbox: 0.6353, stage1_loss_iou: 1.0938, stage1_loss_mask: 2.7399, stage2_loss_cls: 1.2689, stage2_pos_acc: 35.9966, stage2_loss_bbox: 0.5364, stage2_loss_iou: 0.9779, stage2_loss_mask: 2.6163, stage3_loss_cls: 1.2561, stage3_pos_acc: 37.8304, stage3_loss_bbox: 0.5033, stage3_loss_iou: 0.9412, stage3_loss_mask: 2.5846, stage4_loss_cls: 1.2425, stage4_pos_acc: 38.1376, stage4_loss_bbox: 0.5033, stage4_loss_iou: 0.9371, stage4_loss_mask: 2.6020, stage5_loss_cls: 1.2553, stage5_pos_acc: 40.5602, stage5_loss_bbox: 0.4952, stage5_loss_iou: 0.9264, stage5_loss_mask: 2.6149, loss: 34.3788, grad_norm: 69.8435
    2021-08-26 11:21:31,601 - mmdet - INFO - Epoch [1][1900/14659]	lr: 2.500e-05, eta: 8 days, 1:18:42, time: 1.295, data_time: 0.029, memory: 10379, stage0_loss_cls: 1.6763, stage0_pos_acc: 23.5548, stage0_loss_bbox: 0.9613, stage0_loss_iou: 1.3327, stage0_loss_mask: 3.2624, stage1_loss_cls: 1.3659, stage1_pos_acc: 28.5197, stage1_loss_bbox: 0.6521, stage1_loss_iou: 1.0761, stage1_loss_mask: 2.6724, stage2_loss_cls: 1.3015, stage2_pos_acc: 33.7910, stage2_loss_bbox: 0.5524, stage2_loss_iou: 0.9623, stage2_loss_mask: 2.5465, stage3_loss_cls: 1.2769, stage3_pos_acc: 37.5364, stage3_loss_bbox: 0.5105, stage3_loss_iou: 0.9124, stage3_loss_mask: 2.5400, stage4_loss_cls: 1.2598, stage4_pos_acc: 38.8722, stage4_loss_bbox: 0.5056, stage4_loss_iou: 0.8961, stage4_loss_mask: 2.5365, stage5_loss_cls: 1.2736, stage5_pos_acc: 40.1570, stage5_loss_bbox: 0.4917, stage5_loss_iou: 0.8863, stage5_loss_mask: 2.5463, loss: 33.9976, grad_norm: 70.5757
    2021-08-26 11:22:36,294 - mmdet - INFO - Epoch [1][1950/14659]	lr: 2.500e-05, eta: 8 days, 1:10:51, time: 1.293, data_time: 0.027, memory: 10379, stage0_loss_cls: 1.6400, stage0_pos_acc: 26.8736, stage0_loss_bbox: 0.9084, stage0_loss_iou: 1.3418, stage0_loss_mask: 3.4105, stage1_loss_cls: 1.3184, stage1_pos_acc: 31.7751, stage1_loss_bbox: 0.6120, stage1_loss_iou: 1.0903, stage1_loss_mask: 2.7483, stage2_loss_cls: 1.2402, stage2_pos_acc: 37.1692, stage2_loss_bbox: 0.5336, stage2_loss_iou: 0.9890, stage2_loss_mask: 2.6649, stage3_loss_cls: 1.2257, stage3_pos_acc: 41.1638, stage3_loss_bbox: 0.5075, stage3_loss_iou: 0.9536, stage3_loss_mask: 2.6287, stage4_loss_cls: 1.2063, stage4_pos_acc: 42.5924, stage4_loss_bbox: 0.5062, stage4_loss_iou: 0.9484, stage4_loss_mask: 2.6098, stage5_loss_cls: 1.2333, stage5_pos_acc: 43.1168, stage5_loss_bbox: 0.5024, stage5_loss_iou: 0.9465, stage5_loss_mask: 2.6365, loss: 34.4023, grad_norm: 68.9732
    2021-08-26 11:23:41,363 - mmdet - INFO - Exp name: queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
    2021-08-26 11:23:41,364 - mmdet - INFO - Epoch [1][2000/14659]	lr: 2.500e-05, eta: 8 days, 1:05:07, time: 1.302, data_time: 0.033, memory: 10379, stage0_loss_cls: 1.6157, stage0_pos_acc: 28.0797, stage0_loss_bbox: 0.8930, stage0_loss_iou: 1.3461, stage0_loss_mask: 3.2833, stage1_loss_cls: 1.2790, stage1_pos_acc: 33.3812, stage1_loss_bbox: 0.5989, stage1_loss_iou: 1.0778, stage1_loss_mask: 2.6179, stage2_loss_cls: 1.1971, stage2_pos_acc: 40.0282, stage2_loss_bbox: 0.5161, stage2_loss_iou: 0.9692, stage2_loss_mask: 2.4923, stage3_loss_cls: 1.1864, stage3_pos_acc: 41.1632, stage3_loss_bbox: 0.4747, stage3_loss_iou: 0.9215, stage3_loss_mask: 2.4593, stage4_loss_cls: 1.1722, stage4_pos_acc: 44.4289, stage4_loss_bbox: 0.4639, stage4_loss_iou: 0.9089, stage4_loss_mask: 2.4508, stage5_loss_cls: 1.1835, stage5_pos_acc: 44.9918, stage5_loss_bbox: 0.4557, stage5_loss_iou: 0.8996, stage5_loss_mask: 2.4687, loss: 32.9316, grad_norm: 67.7723
    2021-08-26 11:24:46,291 - mmdet - INFO - Epoch [1][2050/14659]	lr: 2.500e-05, eta: 8 days, 0:58:58, time: 1.299, data_time: 0.025, memory: 10379, stage0_loss_cls: 1.6159, stage0_pos_acc: 28.6850, stage0_loss_bbox: 0.9238, stage0_loss_iou: 1.3584, stage0_loss_mask: 3.3194, stage1_loss_cls: 1.2727, stage1_pos_acc: 34.6746, stage1_loss_bbox: 0.6231, stage1_loss_iou: 1.1023, stage1_loss_mask: 2.7153, stage2_loss_cls: 1.1760, stage2_pos_acc: 40.8597, stage2_loss_bbox: 0.5384, stage2_loss_iou: 0.9938, stage2_loss_mask: 2.5986, stage3_loss_cls: 1.1673, stage3_pos_acc: 42.9596, stage3_loss_bbox: 0.5067, stage3_loss_iou: 0.9520, stage3_loss_mask: 2.5876, stage4_loss_cls: 1.1475, stage4_pos_acc: 46.5867, stage4_loss_bbox: 0.4939, stage4_loss_iou: 0.9400, stage4_loss_mask: 2.5573, stage5_loss_cls: 1.1630, stage5_pos_acc: 44.7366, stage5_loss_bbox: 0.4903, stage5_loss_iou: 0.9357, stage5_loss_mask: 2.5647, loss: 33.7436, grad_norm: 69.3526
    2021-08-26 11:25:52,366 - mmdet - INFO - Epoch [1][2100/14659]	lr: 2.500e-05, eta: 8 days, 0:57:52, time: 1.322, data_time: 0.031, memory: 10379, stage0_loss_cls: 1.5835, stage0_pos_acc: 29.9282, stage0_loss_bbox: 0.8743, stage0_loss_iou: 1.3925, stage0_loss_mask: 3.4292, stage1_loss_cls: 1.2144, stage1_pos_acc: 36.4214, stage1_loss_bbox: 0.6154, stage1_loss_iou: 1.1387, stage1_loss_mask: 2.7780, stage2_loss_cls: 1.1328, stage2_pos_acc: 42.5968, stage2_loss_bbox: 0.5381, stage2_loss_iou: 1.0282, stage2_loss_mask: 2.6629, stage3_loss_cls: 1.1280, stage3_pos_acc: 46.1657, stage3_loss_bbox: 0.5008, stage3_loss_iou: 0.9818, stage3_loss_mask: 2.6260, stage4_loss_cls: 1.1079, stage4_pos_acc: 47.8904, stage4_loss_bbox: 0.4936, stage4_loss_iou: 0.9680, stage4_loss_mask: 2.6379, stage5_loss_cls: 1.1114, stage5_pos_acc: 49.2550, stage5_loss_bbox: 0.4914, stage5_loss_iou: 0.9609, stage5_loss_mask: 2.6372, loss: 34.0325, grad_norm: 67.0531
    2021-08-26 11:26:55,927 - mmdet - INFO - Epoch [1][2150/14659]	lr: 2.500e-05, eta: 8 days, 0:46:29, time: 1.271, data_time: 0.022, memory: 10379, stage0_loss_cls: 1.6465, stage0_pos_acc: 27.2861, stage0_loss_bbox: 0.9112, stage0_loss_iou: 1.3809, stage0_loss_mask: 3.2773, stage1_loss_cls: 1.2806, stage1_pos_acc: 32.4545, stage1_loss_bbox: 0.5916, stage1_loss_iou: 1.0747, stage1_loss_mask: 2.6087, stage2_loss_cls: 1.2013, stage2_pos_acc: 37.1091, stage2_loss_bbox: 0.5088, stage2_loss_iou: 0.9662, stage2_loss_mask: 2.4953, stage3_loss_cls: 1.1934, stage3_pos_acc: 40.7695, stage3_loss_bbox: 0.4824, stage3_loss_iou: 0.9193, stage3_loss_mask: 2.4814, stage4_loss_cls: 1.1760, stage4_pos_acc: 41.7712, stage4_loss_bbox: 0.4698, stage4_loss_iou: 0.9015, stage4_loss_mask: 2.4674, stage5_loss_cls: 1.1843, stage5_pos_acc: 42.3751, stage5_loss_bbox: 0.4690, stage5_loss_iou: 0.8993, stage5_loss_mask: 2.4923, loss: 33.0790, grad_norm: 72.1277
    2021-08-26 11:28:00,678 - mmdet - INFO - Epoch [1][2200/14659]	lr: 2.500e-05, eta: 8 days, 0:40:20, time: 1.295, data_time: 0.028, memory: 10379, stage0_loss_cls: 1.6484, stage0_pos_acc: 26.1184, stage0_loss_bbox: 0.9199, stage0_loss_iou: 1.3046, stage0_loss_mask: 3.1031, stage1_loss_cls: 1.2997, stage1_pos_acc: 33.3425, stage1_loss_bbox: 0.6182, stage1_loss_iou: 1.0203, stage1_loss_mask: 2.4607, stage2_loss_cls: 1.2138, stage2_pos_acc: 39.4199, stage2_loss_bbox: 0.5175, stage2_loss_iou: 0.9011, stage2_loss_mask: 2.3768, stage3_loss_cls: 1.1978, stage3_pos_acc: 42.3183, stage3_loss_bbox: 0.4882, stage3_loss_iou: 0.8593, stage3_loss_mask: 2.3531, stage4_loss_cls: 1.1829, stage4_pos_acc: 43.8389, stage4_loss_bbox: 0.4770, stage4_loss_iou: 0.8437, stage4_loss_mask: 2.3511, stage5_loss_cls: 1.1914, stage5_pos_acc: 43.3682, stage5_loss_bbox: 0.4723, stage5_loss_iou: 0.8356, stage5_loss_mask: 2.3603, loss: 31.9969, grad_norm: 71.5349
    2021-08-26 11:29:05,539 - mmdet - INFO - Epoch [1][2250/14659]	lr: 2.500e-05, eta: 8 days, 0:34:48, time: 1.297, data_time: 0.026, memory: 10379, stage0_loss_cls: 1.6389, stage0_pos_acc: 26.4171, stage0_loss_bbox: 0.8738, stage0_loss_iou: 1.3478, stage0_loss_mask: 3.2712, stage1_loss_cls: 1.2597, stage1_pos_acc: 36.5073, stage1_loss_bbox: 0.5825, stage1_loss_iou: 1.0741, stage1_loss_mask: 2.5992, stage2_loss_cls: 1.1765, stage2_pos_acc: 42.4178, stage2_loss_bbox: 0.5101, stage2_loss_iou: 0.9813, stage2_loss_mask: 2.5105, stage3_loss_cls: 1.1682, stage3_pos_acc: 44.9137, stage3_loss_bbox: 0.4719, stage3_loss_iou: 0.9277, stage3_loss_mask: 2.4942, stage4_loss_cls: 1.1524, stage4_pos_acc: 47.3806, stage4_loss_bbox: 0.4631, stage4_loss_iou: 0.9198, stage4_loss_mask: 2.4841, stage5_loss_cls: 1.1615, stage5_pos_acc: 47.7888, stage5_loss_bbox: 0.4551, stage5_loss_iou: 0.9104, stage5_loss_mask: 2.5115, loss: 32.9455, grad_norm: 70.3203
    2021-08-26 11:30:10,491 - mmdet - INFO - Epoch [1][2300/14659]	lr: 2.500e-05, eta: 8 days, 0:29:51, time: 1.299, data_time: 0.025, memory: 10379, stage0_loss_cls: 1.6181, stage0_pos_acc: 27.4700, stage0_loss_bbox: 0.8644, stage0_loss_iou: 1.3378, stage0_loss_mask: 3.2031, stage1_loss_cls: 1.2365, stage1_pos_acc: 34.6672, stage1_loss_bbox: 0.5978, stage1_loss_iou: 1.0615, stage1_loss_mask: 2.6021, stage2_loss_cls: 1.1551, stage2_pos_acc: 41.1225, stage2_loss_bbox: 0.5164, stage2_loss_iou: 0.9623, stage2_loss_mask: 2.5070, stage3_loss_cls: 1.1470, stage3_pos_acc: 43.9128, stage3_loss_bbox: 0.4866, stage3_loss_iou: 0.9210, stage3_loss_mask: 2.4700, stage4_loss_cls: 1.1324, stage4_pos_acc: 45.1144, stage4_loss_bbox: 0.4751, stage4_loss_iou: 0.9079, stage4_loss_mask: 2.4605, stage5_loss_cls: 1.1379, stage5_pos_acc: 45.8629, stage5_loss_bbox: 0.4707, stage5_loss_iou: 0.9008, stage5_loss_mask: 2.4844, loss: 32.6565, grad_norm: 66.8825
    Ground Truth Not Found!
    Ground Truth Not Found!
    Ground Truth Not Found!
    Ground Truth Not Found!
    Ground Truth Not Found!
    Ground Truth Not Found!
    ^CTraceback (most recent call last):
      File "/mnt/home1/programs/miniconda3/envs/usd/lib/python3.8/runpy.py", line 194, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "/mnt/home1/programs/miniconda3/envs/usd/lib/python3.8/runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "/mnt/home1/programs/miniconda3/envs/usd/lib/python3.8/site-packages/torch/distributed/launch.py", line 260, in <module>
        main()
      File "/mnt/home1/programs/miniconda3/envs/usd/lib/python3.8/site-packages/torch/distributed/launch.py", line 253, in main
        process.wait()
      File "/mnt/home1/programs/miniconda3/envs/usd/lib/python3.8/subprocess.py", line 1083, in wait
        return self._wait(timeout=timeout)
      File "/mnt/home1/programs/miniconda3/envs/usd/lib/python3.8/subprocess.py", line 1806, in _wait
        (pid, sts) = self._try_wait(0)
      File "/mnt/home1/programs/miniconda3/envs/usd/lib/python3.8/subprocess.py", line 1764, in _try_wait
        (pid, sts) = os.waitpid(self.pid, wait_flags)
    KeyboardInterrupt
    
    opened by howardchina 4
  • QueryInst with SwinT backbone

    QueryInst with SwinT backbone

    Dear authors,

    I have found on the repo a config of QueryInst with SwinTiny backbone. However, I see no results or checkpoints of this QueryInst version. Did you try to run this? If yes, do you have results and checkpoint saved?

    opened by konrad966 4
  • Learning rate shows an abnormal changing trend and AP =0 while training queryinst model with my own dataset

    Learning rate shows an abnormal changing trend and AP =0 while training queryinst model with my own dataset

    Hi,

    Thanks for your work!

    Recently, I met two issues while training 'queryinst_r50_fpn_1x_coco'model with my own dataset.(samples_per_gpu=2,workers_per_gpu=2, optimizer = dict(type='AdamW', lr=2.5e-05, weight_decay=0.0001,lr_config = dict(policy='step', step=[27, 33])) just as default settings)

    I noticed that learning rate represents an abnormal changing trend:

    1. Starting with INCREASINGING trend in the first epoch ( all values are greater than the default lr setting value which is 2.5e-5)
    2. Keeping decreasing to and then stay with the default lr setting value (2.5e-5) for next few epochs.
    3. Decreasing again and stick to a value, for example, 2.5e-07.

    This trending way is abnormal compared with some conventional lr trending patterns in which lr usually stays still or keeps deceasing during the training process.

    The second issue I met is all the AP and AR values equal to zero all the time. I attached the training log here for review. 20210819_092034.log

    Could you help me with this? Thanks a lot!

    opened by zxw0919 3
  • KeyError: 'QueryInst is not in the models registry'

    KeyError: 'QueryInst is not in the models registry'

    你好,我尝试在win10上用自己的数据集进行训练,但是返回了如下错误。

    训练命令: python tools/train.py configs/queryinst/queryinst_r50_fpn_1x_coco_scratch.py 我把queryinst_r50_fpn_1x_coco_scratch.py中num_classes改为了我的数据集类别总数。

    运行后出现下面问题: **Traceback (most recent call last): File "tools/train.py", line 188, in main() File "tools/train.py", line 161, in main test_cfg=cfg.get('test_cfg')) File "C:\Users\RTX3090.conda\envs\open-mmlab\lib\site-packages\mmdet\models\builder.py", line 58, in build_detector cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg)) File "d:\lbq\code\swin_tsf\mmsegmentation-master\mmcv\mmcv\utils\registry.py", line 210, in build return self.build_func(*args, **kwargs, registry=self) File "d:\lbq\code\swin_tsf\mmsegmentation-master\mmcv\mmcv\cnn\builder.py", line 26, in build_model_from_cfg return build_from_cfg(cfg, registry, default_args) File "d:\lbq\code\swin_tsf\mmsegmentation-master\mmcv\mmcv\utils\registry.py", line 44, in build_from_cfg f'{obj_type} is not in the {registry.name} registry') KeyError: 'QueryInst is not in the models registry' **

    opened by lbq779660843 3
  • Learned Proposal Boxes?

    Learned Proposal Boxes?

    I took a look at the self.init_proposal_bboxes.weight from your trained model, but I found the boxes coordinates were not learned and kept around the initial values of 0.5 0.5 1 1. Is there any problem for this? Thanks

    opened by JialianW 3
  • "GroundTruth not found" error

    For the crop augmentation, since the following negative crop setting is alllowed, is anybody meet the "GroundTruth not found" error?
    'allow_negative_crop': True

    opened by Colt1990 3
  • test stage mAP(box)=0, mAP(seg)=0.71

    test stage mAP(box)=0, mAP(seg)=0.71

    Hi, I just download your code and your pretrained paramters. I test the model in the sub-dataset of coco dataset. But I find that the results of bbox's mAP = 0. I have checked that there are no problems with the dataset.

    here is the result:

    Evaluating bbox... Loading and preparing results... DONE (t=1.75s) creating index... index created! Running per image evaluation... Evaluate annotation type bbox DONE (t=35.44s). Accumulating evaluation results... DONE (t=12.73s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.026 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.005 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.002 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.032 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.049 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.049 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.049 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.003 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.026 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.135

    Evaluating segm... Loading and preparing results... UserWarning: The key "bbox" is deleted for more accurate mask AP of small/medium/large instances since v2.12.0. This does not change the overall mAP calculation. warnings.warn( DONE (t=4.94s) creating index... index created! Running per image evaluation... Evaluate annotation type segm DONE (t=40.55s). Accumulating evaluation results... DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float) DONE (t=13.33s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.465 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.716 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.502 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.304 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.513 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.694 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.619 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.620 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.620 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.480 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.672 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.802 OrderedDict([('bbox_mAP', 0.009), ('bbox_mAP_50', 0.026), ('bbox_mAP_75', 0.005), ('bbox_mAP_s', 0.0), ('bbox_mAP_m', 0.002), ('bbox_mAP_l', 0.032), ('bbox_mAP_copypaste', '0.009 0.026 0.005 0.000 0.002 0.032'), ('segm_mAP', 0.465), ('segm_mAP_50', 0.716), ('segm_mAP_75', 0.502), ('segm_mAP_s', 0.304), ('segm_mAP_m', 0.513), ('segm_mAP_l', 0.694), ('segm_mAP_copypaste', '0.465 0.716 0.502 0.304 0.513 0.694')])

    opened by gaoCleo 1
  • Loss value when training QueryInst

    Loss value when training QueryInst

    Hi all, I really impressed with your work and the performance of QueryInst so I am tried to train your work on my custom dataset. This dataset that I am successfully train on Swin Transformer. Unfortunately, I tried to train on your work so the loss values zero except loss_cls. Can you help me to solve that, I really appreciate it.

    [stage0_loss_cls: 0.0025, stage0_pos_acc0, stage4_loss_iou: 0.0000, stage4_loss_mask: 0.0000, stage5_loss_cls: 0.0024, stage5_pos_acc: 0.0000, stage5_loss_bbox: 0.0000, stage5_loss_iou: 0.0000, stage5_loss_mask: 0.0000,0.0000, stage1_loss_mask: 0.0000, stage2_loss_cls: 0.0012, stage2_pos_acc: 0.0000, stage2_loss_bbox: 0.0000, stage2_loss_iou: 0.0000, stage2_loss_mask: 0.0000, stage3_loss_cls: 0.0012, stage3_pos_acc: 0.0000, stage3_loss_bbox: 0.0000, stage3_loss_iou: 0.0000, stage3_loss_mask: 0.0000, stage4_loss_cls: 0.0010, stage4_pos_acc: 0.0000, stage4_loss_bbox: 0.000](lr: 1.499e-05, eta: 17:44:38, time: 0.620, data_time: 0.004, memory: 10924, stage0_loss_cls: 125712.0807, stage0_pos_acc: 0.0000, stage0_loss_bbox: 0.0000, stage0_loss_iou: 0.0000, stage0_loss_mask: 0.0000, stage1_loss_cls: 90232.6852, stage1_pos_acc: 0.0000, stage1_loss_bbox: 0.0000, stage1_loss_iou: 0.0000, stage1_loss_mask: 0.0000, stage2_loss_cls: 46718.8418, stage2_pos_acc: 0.0000, stage2_loss_bbox: 0.0000, stage2_loss_iou: 0.0000, stage2_loss_mask: 0.0000, stage3_loss_cls: 32931.4105, stage3_pos_acc: 0.0000, stage3_loss_bbox: 0.0000, stage3_loss_iou: 0.0000, stage3_loss_mask: 0.0000, stage4_loss_cls: 41905.0223, stage4_pos_acc: 0.0000, stage4_loss_bbox: 0.0000, stage4_loss_iou: 0.0000, stage4_loss_mask: 0.0000, stage5_loss_cls: 47268.3891, stage5_pos_acc: 0.0000, stage5_loss_bbox: 0.0000, stage5_loss_iou: 0.0000, stage5_loss_mask: 0.0000, loss: 384768.4313, grad_norm: 1482184.3400)

    looking for your reply!

    opened by bnbao 0
  • MMCV version

    MMCV version

    i use mmcv 1.3.3 and 1.4,there will be an assertion: ca_forward miss in module _ext so, what's your version of mmcv test.py used? or maybe there are some other reasons?

    opened by Judy-Liang 0
  • Instance Segmentation using CPU fails on certain images when Swin Transformer backbone was used

    Instance Segmentation using CPU fails on certain images when Swin Transformer backbone was used

    The error that I have encountered when inferencing using the swin transformer on CPU was ERROR - upper bound and larger bound inconsistent with step sign

    Such error disappears when inference was performed on GPU.

    After some investigation it was found that when running on CPU, the bbox (batch size 1) that was provided to the function _do_paste_mask in the file mmdet/models/roi_heads/mask_heads/fcn_mask_head.py has negative coordinates, causing it to fail.

    opened by eric-kwok-nt 0
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 4, 2023
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 5, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 3, 2023
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

yifan liu 147 Dec 3, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 1, 2023
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 3, 2023
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7 FPS on an RTX 2080 Ti) with a ResNet-101 backbone on 550x550 resolution images.

Haotian Liu 1.1k Jan 6, 2023
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 7, 2023