Cairo-math-64x61 - Fixed point 64.61 math library for Cairo / Starknet

Overview

Cairo Math 64x61

A fixed point 64.61 math library for Cairo & Starknet

Signed 64.61 Fixed Point Numbers

A signed 64.61-bit fixed point number is a fraction in which the numerator is a signed 125-bit integer and the denominator is 2^61. Since the denominator stays the same there is no need to store it (as in a floating point value).

64.61 is utilized as the 125 bit representation allows for overflow up to 2^125 * 2^125 (250 bits) during calculation taking advantage of Cairo's 251 bit felts.

Can represent values in the range of -2^64 to 2^64 with precision to 4.34e-19.

Standard Library

Math64x61 includes implementation of mul, div, sqrt, exp, ln, log2, log10, and pow as well as conversion and assertion methods.

Trigonometry Library

Trig64x61 includes implementation of sin, cos, tan and their inverses.

Hyperbolic Library

Hyp64x61 includes implementation of sinh, cosh, tanh, and their inverses.

Extensibility

This library strives to adhere to the OpenZeppelin extensibility pattern: https://github.com/OpenZeppelin/cairo-contracts/blob/main/docs/Extensibility.md

Comments
  • dev: add namespaces

    dev: add namespaces

    Hey,

    I was wondering if you'd accept a PR to introduce namespaces to your lib. Using a namespace is the current accepted best practice, it's much easier on the eyes and to work with from a developer experience perspective.

    See the changes to Math64x61Mock.cairo to get the feel for the difference.

    So far, this PR only has changes in the Math module, but if you're ok with it, I can update Hyp, Trig and Vec as well.

    opened by milancermak 2
  • Function to convert oracle prices

    Function to convert oracle prices

    This PR adds functions that help with using different oracles(https://www.stork.network/, https://empiric.network/, etc). These oracles return prices multiplied by 10**18 and converting these prices to the Math64x61 format can sometimes be quite tricky due to errors in overflow etc.

    Functions proposed here address this problem and can convert such prices to the desired Match64x61 format. Tests are provided as well.

    opened by Chepelau 1
  • OZ standards and PyPi update

    OZ standards and PyPi update

    • Updated to adhere to open zeppelin lib extensibility standards (breaking change, requires changing imports / method refs)
    • Switched from npm to pip module installation to better support cairo / python ecosystem
    • removed starknet language declarations to allow for usage in cairo projects (see #3)
    opened by clexmond 0
  • Rounding bug when using library

    Rounding bug when using library

    Hi, we have a precision bug when converting felts with the library and would like to get some help.

    We have a fee rate that we store globally and per account. The value of the fee rate is 0.0004 but before the value is sent to the contract function we add some quantum precision to it by doing (i.e 0.0004 * 10^8) and then send it as 40000. In the function where the fee rate is used, we remove this precision by doing a Math.to_decimal8(feeRate). All Math.to_decimal8(feeRate) does is remove the quantum precision before the fee rate is stored in storage.

    To further illustrate this, when we try to retrieve the fee rate stored, instead of getting 40000, the value returned is 39999. But it does not stop there. We also noticed that when the fee rate is a multiple of 5, the exact value is returned with no change in precision. Eg 0.0005 (or 50000) returns 50000. But any other value that is not a multiple of 5 loses precision.

    A code sample to demonstrate this is attached below.

    // SPDX-License-Identifier: Apache-2.0
    %lang starknet
    
    from cairo_math_64x61.math64x61 import Math64x61
    from starkware.cairo.common.bool import TRUE, FALSE
    from starkware.cairo.common.cairo_builtins import HashBuiltin
    
    struct FeeRate {
        exists: felt,
        maker: felt,
        taker: felt,
    }
    
    @storage_var
    func global_fee_rate() -> (feeRate: FeeRate) {
    }
    
    @storage_var
    func account_fee_rate(account: felt) -> (feeRate: FeeRate) {
    }
    
    namespace Math {
        const DOT8 = (10 ** 8) * Math64x61.FRACT_PART;
        func to_decimal8{range_check_ptr}(num: felt) -> felt {
           alloc_locals;
           // To fixed precision
           local _ans = Math64x61.fromFelt(num);
           // Remove quantum precision
           let ans = Math64x61.div(_ans, DOT8);
           return ans;
        }
    
        func to_felt8{range_check_ptr}(num: felt) -> felt {
            // Add quantum precision
            let _ans =  Math64x61.mul(num, DOT8);
            // Remove fixed precision
            let ans = Math64x61.toFelt(_ans);
            return ans;
        }
    }
    
    @external
    func convertAndSetGlobalFeeRate{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        maker_fee: felt, taker_fee: felt
    ) {
        alloc_locals;
    
        let maker_fee_d = Math.to_decimal8(maker_fee);
        let taker_fee_d = Math.to_decimal8(taker_fee);
    
        let fee_rate_d = FeeRate(exists=1, maker=maker_fee_d, taker=taker_fee_d);
        global_fee_rate.write(fee_rate_d);
    
        return ();
    }
    
    @view
    func convertAndGetAccountFeeRate{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        account: felt) -> (fee_rate: FeeRate) {
        alloc_locals;
        let (_account_fee_rate) = account_fee_rate.read(account);
    
        if (_account_fee_rate.exists != FALSE) {
            return (_account_fee_rate,);
        }
    
        // Return global fee rate if account fee rate is not set
        let (_global_fee_rate) = global_fee_rate.read();
        let maker_fee = Math.to_felt8(_global_fee_rate.maker);
        let taker_fee = Math.to_felt8(_global_fee_rate.taker);
    
        let fee_rate = FeeRate(
            exists=1,
            maker=maker_fee,
            taker=taker_fee,
        );
        return (fee_rate,);
    }
    
    

    Here's a test case that shows that converting the fee_rate to decimal_8 before storage and after retrieval

    import dataclasses
    import os
    
    import pytest
    from starkware.starknet.testing.starknet import Starknet
    from starkware.starkware_utils.error_handling import StarkException
    
    from .types import TokenAsset
    from .utils import str_to_felt, to_quantum
    
    FILE_DIR = os.path.dirname(__file__)
    CAIRO_PATH = [os.path.join(FILE_DIR, "../contracts")]
    ROUNDING_FILE = os.path.join(FILE_DIR, "../contracts/test/Rounding.cairo")
    ACCOUNT_ADDRESS = str_to_felt("ACCOUNT ADDRESS")
    
    @pytest.fixture()
    async def contracts():
        starknet = await Starknet.empty()
        rounding_contract = await starknet.deploy(
            source=ROUNDING_FILE, cairo_path=CAIRO_PATH, disable_hint_validation=True
        )
    
        return rounding_contract
    
    async def test_fee_rate_with_rounding(contracts):
        rounding_contract = contracts
        maker_fee_rate = to_quantum(0.0001)
        taker_fee_rate = to_quantum(0.0004)
        await rounding_contract.convertAndSetGlobalFeeRate(
            maker_fee_rate,
            taker_fee_rate
        ).execute()
    
        account_fee_rates = await rounding_contract.convertAndGetAccountFeeRate(ACCOUNT_ADDRESS).call()
        assert not (account_fee_rates.result.fee_rate.maker == maker_fee_rate)
        assert not (account_fee_rates.result.fee_rate.taker == taker_fee_rate)
    

    I will be happy to provide further information to help debug this issue. Thanks!

    opened by mayowaparadigm 0
  • A bug in the function`ceil`

    A bug in the function`ceil`

    If the input of the ceil function is an integer x(that is, x modulo FRACT_PART is equal to 0), it will return x+1. But I think this does not match the usual semantics of ceil function in mathematics.

    The bug is found by Medjai, a symbolic execution tool for the Cairo program. The spec we write for ceil is:

    func ceil_spec{range_check_ptr}():
        alloc_locals
        let (local x) = SymbolicMath64x61()
        let (local res) = Math64x61.ceil(x)
        verify_le_signed(x, res)
        verify_lt_signed(res - Math64x61.ONE, x)
        let (_, rem) = signed_div_rem(res, Math64x61.ONE, Math64x61.BOUND)
        medjai_assert_eq_felt(rem, 0)
        return ()
    end
    
    opened by DOFYPXY 0
  • toUint256() function should return the number without the floating part

    toUint256() function should return the number without the floating part

    Thanks to the great lib.

    I just have one remark. I expected the toUint256() function to return the number rounded as Uint256. For example: passing 12,3456 I expect to get 12 from toUint256() To get the right result I have to pass my 12,3456 into the toFelt() function and then the toUint256().

    Also we can add what type of rounding we want as param to the function.

    Best,

    opened by FabienCoutant 0
  • Function for converting oracles

    Function for converting oracles

    Starknet oracles (Empiric network, Stork etc.) provide prices of assets multiplied by 10^18. This can present a challenge when we want to end with price multiplied by 2**61 instead, due to overflow etc. For this reason, I'd like to add a function that manages to convert such prices to the Math64x61 format. Tested to 5e-15 precision.

    opened by Chepelau 0
  • Add 'unsafe' versions of each function

    Add 'unsafe' versions of each function

    Math64x61_assert64x61 is expensive! I was able to reduce the step count of a function by close to 60% just by getting rid of that assert where it wasn't necessary (meaning the fixed-point operations were guaranteed to not overflow).

    Of course these should be used very carefully, but I think they'd be a useful addition.

    opened by bllu404 0
Releases(v2.1.0)
Owner
Influence
A grand strategy game set in an asteroid belt and built on Ethereum.
Influence
Cairo-integer-types - A library for bitwise integer types (e.g. int64 or uint32) in Cairo, with a test suite

The Cairo bitwise integer library (cairo-bitwise-int v0.1.1) The Cairo smart tes

null 27 Sep 23, 2022
A command line interface tool converting starknet warp transpiled outputs into readable cairo contracts.

warp-to-cairo warp-to-cairo is a simple tool converting starknet warp outputs (NethermindEth/warp) outputs into readable cairo contracts. The warp out

Michael K 5 Jun 10, 2022
From "fixed RAnDom CRashes" to "[FIX] Fixed random crashes."

Clean Commit From fixed RAnDom CRashes to [FIX] Fixed random crashes. Clean commit helps you by auto-formating your commits to make your repos better

Mathias 3 Dec 26, 2021
Cairo-bloom - A naive bloom filter implementation in Cairo

?? cairo-bloom A naive bloom filter implementation in Cairo. A Bloom filter is a

Sam Barnes 37 Oct 1, 2022
Xoroshiro-cairo - A xoroshiro128** pseudorandom number generator implementation in Cairo

xoroshiro-cairo A xoroshiro128** pseudorandom number generator implementation in

Milan Cermak 26 Oct 5, 2022
Black-Scholes library implemented as a Cairo smart contract

Cairo Black-Scholes Library Black-Scholes library implemented as a Cairo smart contract. All inputs, outputs, and internal calculations use 27-digit f

Aditya Raghavan 47 Dec 19, 2022
A StarkNet project template based on a Pythonic environment

StarkNet Project Template This is an opinionated StarkNet project template. It is based around the Python's ecosystem and best practices. tox to manag

Francesco Ceccon 5 Apr 21, 2022
Structured, dependable legos for starknet development.

Structured, dependable legos for starknet development.

Alucard 127 Nov 23, 2022
A minimalist starknet amm adapted from StarkWare's amm.

viscus • A minimalist starknet amm adapted from StarkWare's amm. Directory Structure contracts

Alucard 4 Dec 27, 2021
Tutorials for on-ramping to StarkNet

Full-Stack StarkNet Repo containing the code for a short tutorial series I wrote while diving into StarkNet and learning Cairo. Aims to onramp existin

Sam Barnes 71 Dec 7, 2022
python3 scrip for case conversion of source code files writen in fixed form fortran

convert_FORTRAN_case python3 scrip for case conversion of source code files writen in fixed form fortran python3 scrip for case conversion of source c

null 7 Sep 20, 2022
Osintgram by Datalux but i fixed some errors i found and made it look cleaner

OSINTgram-V2 OSINTgram-V2 is made from Osintgram which is made by Datalux originally but i took the script and fixed some errors i found and made the

null 2 Feb 2, 2022
Blender 3.1 Alpha (and later) PLY importer that correctly loads point clouds (and all PLY models as point clouds)

import-ply-as-verts Blender 3.1 Alpha (and later) PLY importer that correctly loads point clouds (and all PLY models as point clouds) Latest News Mand

Michael Prostka 82 Dec 20, 2022
A proof-of-concept package manager for Cairo contracts/libraries

glyph A proof-of-concept package manager for Cairo contracts/libraries. Distribution through pypi. Installation through existing package managers -- p

Sam Barnes 11 Jun 6, 2022
Cairo hooks for pre-commit

pre-commit-cairo Cairo hooks for pre-commit. See pre-commit for more details Using pre-commit-cairo with pre-commit Add this to your .pre-commit-confi

Fran Algaba 16 Sep 21, 2022
a simple proof system I made to learn math without any mistakes

math_up a simple proof system I made to learn math without any mistakes 0. Short Introduction test yourself, enjoy your math! math_up is an NBG-based,

양현우 5 Jun 4, 2021
emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.

emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.

Andrew White 13 Dec 11, 2022
It's a repo for Cramer's rule, which is some math crap or something idk

It's a repo for Cramer's rule, which is some math crap or something idk (just a joke, it's not crap; don't take that seriously, math teachers)

Module64 0 Aug 31, 2022
Simple and easy to use python API for the COVID registration booking system of the math department @ unipd (torre archimede)

Simple and easy to use python API for the COVID registration booking system of the math department @ unipd (torre archimede). This API creates an interface with the official browser, with more useful functionalities.

Guglielmo Camporese 4 Dec 24, 2021