No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

Related tags

Deep Learning TReS
Overview



wacv2021

Creat Environment

This code is train and test on Ubuntu 16.04 while using Anaconda, python 3.6.6, and pytorch 1.8.0. To set up the evironment run: conda env create -f environment.yml after installing the virtuall env you should be able to run python -c "import torch; print(torch.__version__)" in the terminal and see 1.8.0

Datasets

In this work we use 7 datasets for evaluation (LIVE, CSIQ, TID2013, KADID10K, CLIVE, KonIQ, LIVEFB)

To start training please make sure to follow the correct folder structure for each of the aformentioned datasets as provided bellow:

LIVE
live
    |--fastfading
    |    |  ...     
    |--blur
    |    |  ... 
    |--jp2k
    |    |  ...     
    |--jpeg
    |    |  ...     
    |--wn
    |    |  ...     
    |--refimgs
    |    |  ...     
    |--dmos.mat
    |--dmos_realigned.mat
    |--refnames_all.mat
    |--readme.txt
CSIQ
csiq
    |--dst_imgs_all
    |    |--1600.AWGN.1.png
    |    |  ... (you need to put all the distorted images here)
    |--src_imgs
    |    |--1600.png
    |    |  ...
    |--csiq.DMOS.xlsx
    |--csiq_label.txt
TID2013
tid2013
    |--distorted_images
    |--reference_images
    |--mos.txt
    |--mos_std.txt
    |--mos_with_names.txt
    |--readme
KADID10K
kadid10k
    |--distorted_images
    |    |--I01_01_01.png
    |    |  ...    
    |--reference_images
    |    |--I01.png
    |    |  ...    
    |--dmos.csv
    |--mv.sh.save
    |--mvv.sh
CLIVE
clive
    |--Data
    |    |--I01_01_01.png
    |    |  ...    
    |--Images
    |    |--I01.png
    |    |  ...    
    |--ChallengeDB_release
    |    |--README.txt
    |--dmos.csv
    |--mv.sh.save
    |--mvv.sh
KonIQ
fblive
   |--1024x768
   |    |  992920521.jpg 
   |    |  ... (all the images should be here)     
   |--koniq10k_scores_and_distributions.csv
LIVEFB
fblive
   |--FLIVE
   |    |  AVA__149.jpg    
   |    |  ... (all the images should be here)     
   |--labels_image.csv

Training

The training scrips are provided in the run.sh. Please change the paths correspondingly. Please note that to achive the same performace the parameters should match the ones in the run.sh files.

Pretrained models

The pretrain models are provided here.

Acknowledgement

This code is borrowed parts from HyperIQA and DETR.

FAQs

- What is the difference between self-consistency and ensembling? and will the self-consistency increase the interface time? In ensampling methods, we need to have several models (with different initializations) and ensemble the results during the training and testing, but in our self-consistency model, we enforce one model to have consistent performance for one network during the training while the network has an input with different transformations. Our self-consistency model has the same interface time/parameters in the testing similar to the model without self-consistency. In other words, we are not adding any new parameters to the network and it won't affect the interface.
- What is the difference between self-consistency and augmentation? In augmentation, we augment an input and send it to one network, so although the network will become robust to different augmentation, it will never have the chance of enforcing the outputs to be the same for different versions of an input at the same time. In our self-consistency approach, we force the network to have a similar output for an image with a different transformation (in our case horizontal flipping) which leads to more robust performance. Please also note that we still use augmentation during the training, so our model is benefiting from the advantages of both augmentation and self-consistency. Also, please see Fig. 1 in the main paper, where we showed that models that used augmentation alone are sensitive to simple transformations.
- Why does the relative ranking loss apply to the samples with the highest and lowest quality scores, why not applying it to all the samples? 1) We did not see a significant improvement by applying our ranking loss to all the samples within each batch compared to the case that we just use extreme cases. 2) Considering more samples lead to more gradient back-propagation and therefore more computation during the training which causes slower training.

Citation

If you find this work useful for your research, please cite our paper:

@InProceedings{golestaneh2021no,
  title={No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency},
  author={Golestaneh, S Alireza and Dadsetan, Saba and Kitani, Kris M},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={3209--3218},
  year={2022}
}

If you have any questions about our work, please do not hesitate to contact [email protected]

You might also like...
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

Official implementation of NeurIPS 2021 paper
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

 Relative Uncertainty Learning for Facial Expression Recognition
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

Relative Human dataset, CVPR 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

 the official code for ICRA 2021 Paper:
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Owner
Alireza Golestaneh
Alireza Golestaneh
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 5, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python >=3.8.0 Pytorch >=1.7.1 Usage wit

null 7 Oct 13, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 5, 2023
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 2, 2022