Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Overview

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page

This repository provides the official PyTorch implementation of the following paper:

Unsupervised Image Denoising with Frequency Domain Knowledge

Nahyun Kim* (KAIST), Donggon Jang* (KAIST), Sunhyeok Lee (KAIST), Bomi Kim (KAIST), and Dae-Shik Kim (KAIST) (*The authors have equally contributed.)

BMVC 2021, Accepted as Oral Paper.

Abstract: Supervised learning-based methods yield robust denoising results, yet they are inherently limited by the need for large-scale clean/noisy paired datasets. The use of unsupervised denoisers, on the other hand, necessitates a more detailed understanding of the underlying image statistics. In particular, it is well known that apparent differences between clean and noisy images are most prominent on high-frequency bands, justifying the use of low-pass filters as part of conventional image preprocessing steps. However, most learning-based denoising methods utilize only one-sided information from the spatial domain without considering frequency domain information. To address this limitation, in this study we propose a frequency-sensitive unsupervised denoising method. To this end, a generative adversarial network (GAN) is used as a base structure. Subsequently, we include spectral discriminator and frequency reconstruction loss to transfer frequency knowledge into the generator. Results using natural and synthetic datasets indicate that our unsupervised learning method augmented with frequency information achieves state-of-the-art denoising performance, suggesting that frequency domain information could be a viable factor in improving the overall performance of unsupervised learning-based methods.

Requirements

To install requirements:

conda env create -n [your env name] -f environment.yaml
conda activate [your env name]

To train the model

Synthetic Noise (AWGN)

  1. Download DIV2K dataset for training in here
  2. Randomly split the DIV2K dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(DIV2K_C and DIV2K_N) in ./dataset directory.
dataset
└─── DIV2K_C
└─── DIV2K_N
└─── test
  1. Use gen_dataset_synthetic.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/train_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/train_awgn_sigma50.sh # AWGN with a noise level = 50
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

Real-World Noise

  1. Download SIDD-Medium Dataset for training in here
  2. Radnomly split the SIDD-Medium Dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(SIDD_C and SIDD_N) in ./dataset directory.
dataset
└─── SIDD_C
└─── SIDD_N
└─── test
  1. Use gen_dataset_real.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_real.sh
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

To evaluate the model

Synthetic Noise (AWGN)

  1. Download CBSD68 dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/test_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/test_awgn_sigma50.sh # AWGN with a noise level = 50

Real-World Noise

  1. Download the SIDD test dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_real.sh

Pre-trained model

We provide pre-trained models in ./checkpoints directory.

checkpoints
|   AWGN_sigma15.pth # pre-trained model (AWGN with a noise level = 15)
|   AWGN_sigma25.pth # pre-trained model (AWGN with a noise level = 25)
|   AWGN_sigma50.pth # pre-trained model (AWGN with a noise level = 50)
|   SIDD.pth # pre-trained model (Real-World noise)

Acknowledgements

This code is built on U-GAT-IT,CARN, SSD-GAN. We thank the authors for sharing their codes.

Contact

If you have any questions, feel free to contact me ([email protected])

You might also like...
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

The official codes of
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Owner
Donggon Jang
Donggon Jang
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 10 Nov 24, 2021
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 6, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

null 19 Oct 14, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

null 22 Sep 22, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

null 238 Dec 22, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 5, 2022