Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Related tags

Deep Learning FSAC
Overview

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Main requirements

torch >= 1.0

torchvision >= 0.2.0

Python 3

Environmental settings

This repository is developed using python 3.6.12 on Ubuntu 16.04.5 LTS. The CUDA and pytorch version is 11.2 and 1.7.1. We use one NVIDIA 3090 GPU card for training and testing.

Dataset

PASCAL VOC, Watercolor, Cityscapes, Foggycityscapes -> Please follow the instructions in [Link] to prepare the datasets.

Daytime-Sunny, Dusk-Rainy, and Night-Rainy -> Dataset preparation instruction link [Link].

Code

Faster R-CNN -> Thanks for jwyang [Link]; Fourier Domain Adaptation -> Thanks for Yanchao Yang [Link].

Our Augmentation (Mix+Replace+Extend+Disorder).

Train

To train a faster R-CNN model with vgg16 on pascal_voc:

CUDA_VISIBLE_DEVICES=$GPU_ID python trainval_net.py --dataset pascal_voc --net vgg16 --bs 1 --cuda

And you need to add augmentated data in the loadpath by creating a new dataset_name variable.

Test

To test:

python test_net.py --dataset pascal_voc --net vgg16 --modelpath your modelpath --cuda

Augmentation

Daytime-Sunny -> Dusk-Rainy shapenet_illuminants

Daytime-Sunny -> Night-Rainy shapenet_illuminants

Result

shapenet_illuminants

Results on adaptation from Cityscapes to FoggyCityscapes. ‘prsn’, ‘mcycl’, and ‘bcycl’ separately denote ‘person’, ‘motorcycle’, and ‘bicycle’ category.

shapenet_illuminants

Results on adaptation from Daytime-sunny to Duskrainy. Here, we directly run the released codes of the compared methods to obtain the results.

shapenet_illuminants

Results on Daytime-sunny → Night-rainy.

shapenet_illuminants

Results on the compound target domain.

shapenet_illuminants

You might also like...
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository provides the official PyTorch implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Owner
null
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

null 45 Dec 8, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 7 Feb 10, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 6, 2023
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 5, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 7, 2023
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

null 90 Dec 29, 2022